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Abstract

Cystic fibrosis (CF) is an autosomal recessive disorder caused by 
mutations in the CF transmembrane conductance regulator (CFTR) gene. 
The CFTR protein acts as an ion channel, and its deficiency results in an 
increased density and viscosity of secretion. CF shows high phenotypic 
variability because of the intervention of genetic and environmental factors. 
In this context, metabolomics is a useful tool to identify clinical biomarkers. 
Gas chromatography mass spectrometry (GC-MS) and 1H-nuclear magnetic 
resonance spectroscopy (1H-NMR) were used to study urine samples of 35 
patients affected by CF with different genotypes (F508del/F508del, T338I/
T338I, and F508del/T338I). The multivariate statistical analysis allowed 
the separation of the samples based on the metabolomics profile. A good 
separation between F508del/F508del vs. T338I/T338I genotypes, and 
F508del/F508del vs. F508del/T338I genotypes were observed. Moreover, 
the comparison between the two groups T338I/T338I vs. F508del/T338I did 
not highlight significant differences. The variables of importance responsible 
for the separation were sugars, organic acids, amino acids, and polyols. 
Metabolomic analysis has proven to be a useful tool to discriminate among 
the different subclasses of CF, mirroring the complexity of the pathological 
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condition. The present study represents a starting 
point for better understanding physiopathological 
changes and identifying new clinical biomarkers.
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Introduction

Cystic fibrosis (CF) is a genetic disease inherited 
with an autosomal recessive mechanism caused by 
the mutation of the CF transmembrane conduc
tance regulator (CFTR) gene, which codes for the 
homonymous protein, whose primary function is to 
act as a chloride channel [1]. The dysfunction of 
this protein is responsible for the increased density 
and viscosity of the mucous secretions of the 
secretory epithelia. CF is a disease that may present 
a chronic and evolutionary course with multi-organ 
involvement and poor prognosis [2]. Moreover, 
the phenotype of the disease can go from severe 
to mild or even asymptomatic forms. The classic 
manifestation is represented by chronic progres
sive bronchopneumopathy, exocrine pancreatic 
insufficiency, and elevated levels of electrolytes 
(Cl-, Na+) in sweat; in addition, a possible 
involvement can affect the liver, biliary tract, 
intestine, paranasal sinuses, endocrine pancreas, 
and vas deferens [3-7]. In Sardinia, the T338I 
and the F508del are the most frequent mutations, 
and the latter, in homozygous, is responsible 
for severe clinical pictures involving lung and 
pancreas functions [8]. On the other hand, patients 
with the T338I mutation, both homozygous and 

heterozygous (even with severe mutation F508del), 
present a mild clinical picture, with absent lung 
involvement and normal pancreatic function [1, 
9, 10]. A recent approach, named metabolomics, 
has been applied to investigate the phenotype of 
CF at the molecular level [11, 12]. This method 
may identify specific metabolites and their relative 
variations in CF patients, providing further insights 
into the pathophysiology. In this scenario, there has 
been growing interest in applying metabolomics to 
characterize the metabolic phenotype of CF [13-16]. 
To date, metabolomic studies on the understanding 
of the basic pathophysiology of patients with 
CF are rather limited. Wetmore et al. in 2010 
conducted an untargeted metabolomics analysis 
of cultured primary human airway epithelial cells 
from three separate cohorts of patients with CF 
compared to a group of disease-free subjects to 
understand the epithelial dysfunction caused by CF 
[15]. Impairment of more than 100 metabolites in 
CF patients was associated with decreased purine 
biosynthesis, increased tryptophan catabolism, 
decreased glutathione biosynthesis, and low levels 
of glucose metabolism mainly due to increased 
cellular sensitivity to oxidative stress. Joseloff 
et al. in 2014 conducted a metabolomic study of 
the serum profile of children with CF compared 
to subjects with non-CF lung disease [16]. The 
authors identify 92 altered metabolites in CF 
patients, mostly involved in lipid metabolism, 
oxidants, and markers consistent with abnormali
ties in bile acid processing. Furthermore, some 
identified metabolites were of bacterial origin, 
indicating intestinal dysbiosis in children with 
CF compared with non-CF. Microbial dysbiosis 
is a hallmark of CF and refers to the imbalance 
in the composition, diversity, and function of 
the microbial communities, particularly in the 
lungs and gastrointestinal tract. This dysbiosis 
may play a crucial role in disease progression, 
inflammation, and metabolic alterations in CF 
patients [17]. The present study evaluated patients 
with CF carrying the two most frequent mutations 
found in the Sardinian population. Specifically, 
the urinary metabolome of patients with T338I 
homozygous, F508del homozygous, and F508del/
T338I heterozygous genotypes was analyzed, with 
the aim of comparing the metabolic phenotypes 
associated with these three different genotypes. 
This approach may help identify unique metabolic 
characteristics and specific differences that could 
serve as potential biomarkers for diagnosis and 
disease stratification.
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Materials and methods 

Patients

The study involved the ARNAS “G. Brotzu” 
Sardinian Regional Center for CF treatment, the 
Unit of Neonatal Intensive Care of the AOU of 
the Department of Surgery of the University of 
Cagliari, and the Unit of Clinical Metabolomics of 
the Department of Biomedical Sciences of the same 
University. The cohort included 35 patients (22 
males, 13 females, aged between 1 and 54 years; 
mean age 21 ± 14) divided into three groups, based 
on genotype. The three populations consisted of 
F508del homozygous, T338I homozygous, and 
F508del/T338I heterozygous patients (Fig. 1 and 
Tab. 1). Figure 1. Patient flowchart of the study.

7 males,
5 females

7 males,
5 females

8 males,
3 females

35 patients: 
22 males, 
13 females

F508del/ 
F508del

F508del/
T338I

T338I/ 
T338I

Table 1. Demographic and clinical features of cystic fibrosis (CF) patients.

Genotype Gender Age  
(years)

Weight  
(kg)

Height  
(meters)

Pancreatic 
insufficiency

Pulmonary 
involvement

FEV1  
(%)

F508del/F508del

F 13 34.7 1.45 yes yes 60
F 18 59 1.7 yes yes 64
F 1 3.88 0.56 yes no -
M 31 55 1.63 yes yes 40
M 23 57 1.67 yes yes 100
M 16 44.8 1.6 yes yes 103
M 25 65 1.72 yes yes 67
M 45 72 1.7 yes yes 42
M 36 76 1.78 yes yes 92
M 16 62 1.67 yes yes 116
M 32 70 1.75 yes yes 44

T338I/T338I

F 29 43 1.63 no no 71
M 4 9.9 0.81 no no -
M 22 83 1.71 no no 101
F 27 43 1.54 no no 107
M 29 63 1.78 no no 118
M 47 80 1.8 no no 99
M 16 52 1.71 no no 100
F 17 48.8 1.54 no no 110
F 5 17.5 1.06 no no -
F 7 16.6 1.05 no no 74
M 14 42 1.51 no no 105
M 54 77 1.6 no no 118

F508del/T338I

F 9 28.4 1.3 no no 81
F 3 9.5 0.79 no no -
F 10 35 1.38 no no 93
M 25 47.5 1.58 no no 80
F 19 54.5 1.65 no no 109
M 11 41 1.39 no no 88
M 4 15.2 0.99 no no -
M 32 81.5 1.77 no no 89
M 30 62 1.78 no no 86
F 16 51.7 1.52 no no 77
M 46 82 1.8 no no 85
M 8 31 1.27 no no 109

FEV1: forced expiratory volume in the 1st second.
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Pancreatic insufficiency is very frequent in CF 
patients, and it’s always present in severe forms like 
F508del homozygous; fecal elastase is the parameter 
used to evaluate pancreatic function; values lower 
than 200 mcg/g indicate pancreatic insufficiency. On 
the contrary, pancreatic insufficiency is not present in 
mild forms, particularly in those with T338I mutation. 

Pulmonary involvement is almost always present 
in severe forms (F508del homozygous), while its 
modest or even absent in mild one; it’s characterized 
by cough, recurrent infections, chronic Pseudomo­
nas aeruginosa or Staphylococcus aureus infection, 
reduced respiratory function; FEV1 (forced expiratory 
volume in the 1st second) is the main parameter of 
respiratory function and it’s the parameter used in CF 
patients to monitor the progress of the disease. 

Inclusion criteria were patients with CF, of both 
genders, of any age group, with the F508del/F508del, 
T338I/T338I, and F508del/T338I genotypes. Ex
clusion criteria were patients not affected by CF or 
affected by CF but with different genotypes than 
those mentioned above.

For each participant, a first-morning urine sample 
was collected at the day hospital, after informed 
consent, and stored in a freezer at -20°C before 
being transferred to the Clinical Metabolomics 
Laboratory of the Department of Biomedical 
Sciences of the University of Cagliari. About 1 mL 
of each urine sample was transferred to a sterile test 
tube containing a 1% concentration of sodium azide 
solution (acting as a bacteriostatic) and stored in a 
freezer at -80°C. The samples were subsequently 
prepared for gas chromatography mass spectrometry 
(GC-MS) and 1H-nuclear magnetic resonance 
(1H-NMR) spectroscopy analysis according to our 
internal protocol [18]. 

GC-MS analysis

150 μL of urine was transferred to a 2 mL 
Eppendorf tube with 200 μL of an aqueous urease 
solution (1 mg/mL) and subjected to ultrasound 
for 30 min. Then 800 μL of methanol was added to 
denature the enzyme. After centrifugation, 750 μL of 
the supernatant was taken, transferred into glass test 
tubes, and evaporated to dryness in an Eppendorf 
vacuum centrifuge. The dried samples were then 
derivatized with 50 μL of a solution of methoxamine 
in pyridine (10 mg/mL; Sigma-Aldrich). After 1 
hour at 70°C, 50 μL of N-methyl-N-(trimethylsilyl) 
trifluoroacetamide (Sigma-Aldrich) was added, and 
the mixture was left to react at room temperature for 
1 hour. Then, samples were diluted with 600 µL of 

anhydrous hexane containing undecane as an internal 
standard. One µL of each sample was injected splitless 
into a 7890A gas chromatograph coupled with a 
5975C mass spectrometer (Agilent Technologies, 
Santa Clara, CA, USA) equipped with a 30 m × 0.25 
mm ID, fused silica capillary column, with a 0.25 μM 
TG-5MS stationary phase (Thermo Fisher Scientific, 
Waltham, MA, USA). The injector temperature was 
250°C, the gas flow through the column was 1 mL/
min, and the transfer line temperature was 280°C. 
The column’s initial temperature was kept at 70°C 
for 3 min, then increased to 250°C at 12°C/min 
and held for 4 min. Finally, the temperature was 
increased to 300°C at 50°C/min and kept for 1 min. 
Identification of metabolites was performed using the 
standard NIST 08 and GMD mass spectra libraries 
and, when available, by comparison with authentic 
standards [19]. Data processing was performed using 
MassHunter Software (Agilent Technologies). The 
total area of chromatograms (= 100) was used to 
normalize the measurement of the metabolites from 
each urine sample. 

1H-NMR analysis 

Before analysis, samples were centrifuged for 10 
min at 4°C at 12,000× g to remove solid particles. 
Then, 630 μL of the supernatant were mixed with 
70 μL of potassium phosphate buffer in D2O (1.5 
M, pH 7.4) containing sodium 3-trimethylsilyl-
propionate-2,2,3,3,-d4 (TSP) as an internal standard 
(98 atom% D, Sigma-Aldrich, Milan, Italy). Finally, 
650 μL were transferred to 5 mm NMR glass tubes 
for 1H-NMR analysis. 

1H-NMR analysis was carried out using a Varian 
UNITY INOVA 500 spectrometer operating at 
499.839 MHz for proton and equipped with a 5 
mm double resonance probe (Agilent Technologies, 
Santa Clara, CA, USA). One-dimensional proton 
NMR spectra were obtained by using a 1D nuclear 
overhauser enhancement spectroscopy (NOESY) 
standard pulse sequence to suppress water signals 
with a relaxation delay of 3 s. For each sample, 256 
free induction decays (FIDs) were collected into 64K 
data points with a spectral width of 6,000 Hz spectral 
with a 90° pulse, an acquisition time of 2 s, and a 
mixing time of 100 ms. The FIDs were weighted 
by an exponential function with a 0.5 Hz line-
broadening factor prior to Fourier transformation. 
NMR spectra were phased and baseline corrected 
using an Advanced Chemistry Development (ACD) 
lab (Toronto, ON, Canada) Processor Academic 
Edition (Advanced Chemistry Development, 1 
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December 2010) and chemical shifts referenced 
internally to trisodium phosphate (TSP) at δ = 0.0 
ppm. The spectral region comprising the signal of 
residual water and urea (4.7-6.5 ppm) was removed. 
The final spectral regions were between 0.5-4.7 ppm 
and 6.5-9.5 ppm. The metabolites were identified 
and quantified using the Chenomx NMR Suite 
7.1 (Chenomx Inc., Edmonton, AB, Canada), an 
integrated set of tools for identifying and quantifying 
metabolites in NMR spectra [20]. Chenomx NMR 
Suite is equipped with reference libraries containing 
numerous pH-sensitive compound models that are 
identical to the spectra of pure compounds obtained 
under similar experimental conditions. GraphPad 
Prism software (version 7.01, GraphPad Software, 
Inc., San Diego, CA, USA) was used to perform the 
univariate statistical analysis. Statistical significance 
was assessed by using the Mann-Whitney U test; p ≤ 
0.05 was considered statistically significant. 

Multivariate statistical analysis 

The multivariate statistical analysis was used to 
get the most information from complex spectrometric 
data. Different procedures were used: the principal 
component analysis (PCA), the partial least-square 
discriminant analysis (PLS-DA), and the orthogonal-
projection on latent structures discriminant analysis 
(OPLS-DA). PCA is a data simplification technique 
that can summarize groups of multivariable data 
into two main components, PC1 and PC2. PC1 is a 
linear combination of the original starting variables 
and describes the significant variance in the data 
set; PC2, on the other hand, is a parameter that 
describes the degree of variance in the data set and is 
orthogonal to PC1. Graphically, the output from the 
PCA analysis consists of scores plot, indicating any 
grouping in the data sets in terms of metabolomic 
similarity, and loadings plot, indicating which 
variables are important for the patterns obtained in 
the scores plot. The PLS-DA uses a Y-matrix that 
contains the information of the class to which the 
sample belongs, and therefore, it is widely used 
for the classification of the sample. The PLS-DA 
is generally associated with the OPLS-DA, which 
maximizes the covariance between the measured 
data of the X-variable (peaks area of GC-MS 
chromatograms) and the response of the Y-variable 
(class assignment) within the groups. The goodness 
of the model was evaluated using a 7-fold cross-
validation and “permutation test” (500 times). The 
permutation test was calculated by randomizing 
the Y-matrix while the X-matrix was kept constant. 

The permutation plot then displays the correlation 
coefficient between the original Y-variable and 
the permuted Y-variable on the X-axis versus the 
cumulative R2 and Q2 on the Y-axis and draws the 
regression line. The intercept is a measure of the 
overfit, Q2 intercept value less than 0.05 is indicative 
of a valid model. The most significant variables 
were extracted from each model’s plot of loadings 
(metabolites) to which univariate statistical analysis 
was applied. GraphPad Prism software (version 7.01, 
GraphPad Software, Inc., San Diego, CA, USA) was 
used to perform the univariate statistical analysis 
of the data. Statistical significance was assessed 
by using the Mann-Whitney U test; p ≤ 0.05 was 
considered statistically significant. The Benjamini-
Hochberg adjustment was subsequently applied 
to p-values, to acquire the level of significance for 
multiple testing. The relative concentrations of the 
metabolites in the different groups were compared 
using box-and-whisker plots.

Correlation-based network analysis

Two different software were used to create 
the network analysis: Dave (Data Analysis and 
Visualization Engine) and Cytoscape (version 
3.9.1). Using Dave, an exploratory data analysis 
to gain insights into the metabolomic dataset was 
conducted. This step involved statistical analysis 
and data visualization to identify differentially 
expressed metabolites between groups. Dave’s 
interactive visualizations can help to identify 
patterns and potential biomarkers associated with 
the disease. Next, we used the results from the data 
analysis to identify specific metabolite pathways 
that are significantly altered in patients with CF. 
The identified metabolite pathway data were 
imported into Cytoscape to construct the network 
representation. Each metabolite was represented 
as a node, and the biochemical interactions or 
relationships between metabolites were rep
resented as edges. Different colours, shapes, 
and labels were used to denote different types of 
metabolites and their properties. Cytoscape offers 
various layout algorithms to arrange the nodes 
and edges in a visually appealing and informative 
way. After selecting an appropriate layout, the 
appearance of the pathway diagram was fine-
tuned to highlight the most relevant information. 
This included differentiating upregulated and 
downregulated metabolites, highlighting key path
ways or nodes, and providing annotations for es
sential metabolites.
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Results

Thirty-five patients underwent metabol
omics analysis, of which 11 belonged to the 
F508del/F508del population, 12 to the T338I/
T338I population, and 12 to the F508del/T338I 
population. 

The identified metabolites generated two 
data matrixes corresponding to the metabolites 
detected with GC/MS and 1H-NMR. The results 
of the multivariate analysis applied to the GC-
MS data of the samples are shown below. A 
first analysis of the spectral data was carried out 
through the application of PCAs, which did not 
show clusters or groupings nor the presence of 
strong outliers (data not shown). Subsequently, 
a supervised analysis was applied to verify a 
possible separation of the samples into three 
distinct classes according to the metabolomics 
profile (Fig. 2). The PLS-DA model was 
not statistically significant (R2X = 0.336, 
R2Y = 0.406, Q2 = -0.0365), probably due to 
overlapping samples T338I/T338I (blue color) 
and F508del/T338I (empty circle), indicating a 
similar urinary profile between the two groups. 
The same result was highlighted by a PLS-DA 
model obtained with the 1H-NMR approach. For 
this reason, a pairwise evaluation was carried 
out.

At first, the metabolomics profiles of pa
tients with the F508del/F508del genotype and 
patients with the T338I/T338I genotype were 
compared (Fig. 3). The OPLS-DA model shows 
good separation between the F508del/F508del 
genotype and the T338I/T338I genotype, 
indicating a different metabolomic profile be
tween the two groups of samples. Indeed, the 
OPLS-DA model (Fig. 3) was established with 
one predictive and one orthogonal component 
and showed good values of R2X, R2Y, and 
Q2 (0.551, 0.882, 0.441, respectively). The 
validity of the OPLS-DA model was evaluated 
through a permutation test using 500 times. 
A value of Q2 intercept = -0.332 indicates the 
statistical validity of the OPLS-DA model. The 
univariate statistical analysis was performed 
comparing the relative concentrations of me
tabolites obtained with GC-MS and 1H-NMR 
analysis. The significantly altered metabolites 
between the two groups (p-value < 0.05) were: 
glucose, 4-hydroxyphenylacetic acid, citric 
acid, scyllo-inositol, 3-hydroxyisovaleric acid, 
maltose, pyruvic acid, isobutyric acid, tyro

sine, 3-hydroxy-3-methylglutaric acid, and 
methylhistidine, as shown in Fig. 4. The rela
tive concentration (± standard deviation) and 
respective p-value for each metabolite are 
reported in Tab. 2. Biochemical network map
ping from comparing the urine metabolome 
of F508del/F508del and T338I/T338I patients 
showed a significant metabolic shift (Fig. 5). 
Based on biochemical and structural similarities 
and the number of interconnected metabolites, 
the resulting relationships indicated several 
metabolites strongly associated with each other.

Next, the metabolomics profile of patients 
with the F508del/F508del genotype and pa
tients with the F508del/T338I genotype was 

Figure 2. Partial least-square discriminant analysis (PLS-
DA) score plot model obtained with multivariate statistical 
analysis conducted on urine samples acquired by gas 
chromatography mass spectrometry (GC-MS). The blue 
circles represent T338I/T338I samples, the red ones 
F508del/F508del samples and the empty circles the 
F508del/T338I samples. The model was not statistically 
significant. 

Figure 3. Orthogonal-projection on latent structures discri-
minant analysis (OPLS-DA) score plot model obtained with 
multivariate statistical analysis conducted on urine samples 
acquired by gas chromatography mass spectrometry (GC-
MS): F508del/F508del (red color), T338I/T338I (blue color). 
Q2 intercept value less than 0.05 is indicative of a valid model.
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Figure 4. Altered metabolites between the F508del/F508del and T338I/T338I groups. The Mann-Whitney U test was used to 
verify the corresponding significance. The relative concentrations of the metabolites identified by A) gas chromatography mass 
spectrometry (GC-MS) and B) 1H-nuclear magnetic resonance (1H-NMR) analysis were shown using box-and-whisker plots. 

A.

B.

compared (Fig. 6). An OPLS-DA model was 
built with one predictive and one orthogonal 
component. The analysis showed suitable 
statistical parameters (R2X = 0.548, R2Y = 
0.683, Q2 = 0.400). A permutation test using 
500 times was performed to assess the validity 
of the statistical mode. A value of Q2 intercept 
= -0.414 indicates the statistical validity of 
the OPLS-DA model. A Mann-Whitney U test 

revealed significant concentration differences of 
glucose, citric acid, 3-hydroxyisovaleric acid, 
3-(3-hydroxyphenyl)-3-hydroxypropionic acid 
(HPHPA), pyruvic acid, 4-carboxyglutamic 
acid, tyrosine, 3-hydroxy-3-methylglutaric acid 
and methylhistidine between the two groups 
(Fig. 7). The relative concentration (± standard 
deviation) and respective p-value for each 
metabolite are reported in Tab. 2. A significant 
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Metabolites Mean ± SD 
F508del/F508del

Mean ± SD   
T338I/T338I

Mean ± SD 
F508del/T338I

p-value a

F508del/F508del 
vs. 

T338I/T338I

p-value a

F508del/F508del 
vs. 

F508del/T338I

GC-MS

Glucose 1.901 ± 2.086 0.6232 ± 0.243 0.751 ± 0.399 0.016 0.050

Maltose 2.136 ± 1.444 1.107 ± 0.7109 - 0.033 -

Citric acid 8.488 ± 4.361 16.06 ± 8.932 20.91 ± 10.11 0.041 0.016

Scyllo-inositol 1.615 ± 2.013 0.633 ± 0.543 - 0.025 -

3-hydroxyisovaleric acid 0.117 ± 0.069 0.239 ± 0.155 0.243 ± 0.131 0.050 0.033

4-hydroxyphenylacetic acid 0.699 ± 0.738 0.188 ± 0.104 - 0.008 -

HPHPA 0.197 ± 0.209 - 0.8415 ± 0.882 - 0.040
1H-NMR

Pyruvic acid 1.862 ± 0.5122 3.954 ± 2.314 4.692 ± 3.104 0.016 0.050

Citric acid 20.64 ± 6.444 32.98 ± 13.5 38.62 ± 17.08 0.033 0.042

Isobutyric acid 0.5535 ± 0.268 0.297 ± 0.161 - 0.050 -

Tyrosine 4.683 ± 2.505 1.732 ± 0.496 2.426 ± 1.585 0.008 0.032

3-hydroxy-3-methylglutaric acid 2.152 ± 0.606 1.526 ± 0.6113 1.203 ± 0.4125 0.025 0.008

Methylhistidine 4.371 ± 1.954 2.645 ± 1.084 2.482 ± 0.9605 0.041 0.025

4-carboxyglutamic acid 22.57 ± 7.5 - 14.44 ± 4.825 - 0.016
1H-NMR: 1H-nuclear magnetic resonance; GC-MS: gas chromatography mass spectrometry; HPHPA: 3-(3-hydroxyphenyl)-3-hydroxy 
propionic acid; SD: standard deviation. 
a p-value with Benjamini-Hochberg correction.
 The dash indicates that the metabolite was not significantly altered in that group.

Table 2. Relative concentration (± standard deviation) and respective p-value for discriminant metabolites among the 
F508del/F508del, T338I/T338I and F508del/T338I groups.

Figure 5. Biochemical similarity network displaying changes in urinary metabolites between homozygosity for F508del 
and homozygosity for T338I cohorts. 
Nodes represent metabolites and display the direction of the fold change in homozygosity for T338I versus homozygosity for F508del. An 
orange line indicates a biochemical relationship. A pink line represents a positive correlation, while a gray line indicates a negative correlation. 
Metabolites shown in red are decreased, and those in green are increased. Thick black borders identify metabolites significantly altered.
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metabolic shift between the urinary metabolome 
of F508del/F508del and F508del/T338I patients 
was highlighted by the biochemical network 
mapping. Several metabolites were strongly 
associated with each other, as shown in Fig. 
8, which reported the relationships based on 
biochemical and structural similarities and the 
interconnections among metabolites.

Finally, the metabolomic profile of patients 
with the T338I/T338I genotype and patients with 
the F508del/T338I genotype was compared (Fig. 
9). In this case, the OPLS-DA model was not statis
tically significant (R2X = 0.326, R2Y = 0.580, Q2 = 
0.0736). The statistical model indicated a substantial 
similarity in the metabolomics profile of the two  
groups.

Figure 6. Orthogonal-projection on latent structures discrimi-
nant analysis (OPLS-DA) score plot model obtained with mul-
tivariate statistical analysis conducted on urine samples ac-
quired by gas chromatography mass spectrometry (GC-MS): 
F508del/F508del (red color), F508del/T338I (empty circle). Q2 
intercept value less than 0.05 is indicative of a valid model.

Figure 7. Altered metabolites between the F508del/F508del and F508del/T338I groups. The Mann-Whitney U test was used to 
verify the corresponding significance. The relative concentrations of the metabolites identified by A) gas chromatography mass 
spectrometry (GC-MS) and B) 1H-nuclear magnetic resonance (1H-NMR) analysis were showed using box-and-whisker plots.

A.

B.
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Discussion 

The CFTR gene encodes a 1,480 amino acid 
long transmembrane protein with a symmetrical 
structure, it is a unique ATP-binding cassette 
(ABC) transporter that functions as a chloride (Cl-)  
and bicarbonate (HCO

3
-) channel in epithelial cells. 

The properties of CFTR refer to how effectively it 
allows chloride and other anions to pass through 
the channel once it is open. These properties are 
crucial for normal physiological function and 
are directly linked to the pathology [21]. CF is 
caused by ∼2,000 mutations in the CFTR gene 
with a wide range of disease severity, which can 
be reflected in complex intra- and inter-patient 
alterations. The phenotypic variability, observed 
not only in patients with different genotypes but 
also in patients with the same genotype, suggests 

Figure 8. Biochemical similarity network displaying changes in urinary metabolites between homozygosity for F508del 
and heterozygosity for F508del/T338I cohorts. 
Nodes represent metabolites and display the direction of the fold change in heterozygosity for F508del/T338I versus homozygosity for 
F508del. An orange line indicates a biochemical relationship. A pink line represents a positive correlation, while a gray line indicates a 
negative correlation. Metabolites shown in red are decreased, and those in green are increased. Thick black borders identify metabolites 
significantly altered.

Figure 9. Orthogonal-projection on latent structures 
discriminant analysis (OPLS-DA) score plot model 
obtained with multivariate statistical analysis con
ducted on urine samples acquired by gas chroma
tography mass spectrometry (GC-MS) did not 
show a significant separation between the T338I/
T338I (blue color) and F508del/T338I (empty circle)  
samples.
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the presence of other factors capable of influencing 
the severity of the disease [9, 10]. For this reason, 
several studies have led to the discovery of gene 
modifiers (such as genes involved in the immune 
response or inflammation) and to the identification 
of epigenetic factors (such as tobacco, pollution, 
socioeconomic status, and adherence to therapies) 
which seem to have the ability to modulate the 
expression of the disease [22, 23]. 

Metabolomics, an emerging tool of systems 
medicine, allows the investigation of the mo
lecular complexity of pathology by identifying 
the metabolic phenotypes’ final product of the 
interaction between genetic and environmental 
factors. Therefore, it represents a valuable tool 
for 1) studying complex pathologies with variable 
expressivity, such as CF, and 2) bridging the gap 
between genotype and phenotype. Its integration 
into clinical practice holds promise for earlier 
diagnosis, more accurate disease monitoring, and 
personalized therapeutic strategies, ultimately 
improving patient outcomes. 

The present study, conducted on patients 
with CF, showed a different metabolomic profile 
between the population with the F508del/F508del 
genotype and the populations with the T338I/T338I 
and F508del/T338I genotypes. The metabolomics 
profiles are consistent with the known clinical 
pictures typical of these populations under 
examination. Patients with the F508del/F508del 
genotype present a generally severe clinical picture, 
mainly characterized by progressive chronic 
bronchopneumopathy and exocrine pancreatic 
insufficiency. In contrast, patients with the T338I/
T338I and F508del/T338I genotypes present a mild 
clinical picture, with no pulmonary involvement 
and normal pancreatic function [1, 2]. It is intriguing 
to note that the comparison between T338I/T338I 
and F508del/T338I shows a similar metabolic 
phenotypic profile, probably indicative of a possible 
adaptation thanks to the compensation given by the 
T338I mutation that affects the transmembrane 
domain 6 of the CFTR protein with the substitution 
of threonine with isoleucine in position 3. This 
mutation contributes to a partial alteration of the 
selectivity and permeability of the channel to ions, 
causing a reduced chloride conductance and altered 
permeability of bicarbonate, which causes a mild 
to moderate phenotype. In contrast, the F508del 
mutation causes a severe phenotype as it is essential 
for correct folding, trafficking, and channel gating.

The metabolomics profiles, highlighted by 
comparing patients with the F508del/F508del 

genotype to those with the T338I/T338I geno
type and those with the F508del/T338I geno
type, resulted in statistically significant altered 
metabolites. The significantly altered urinary 
metabolites identified a characteristic metabo
lomics fingerprint in the populations under 
investigation. This will be interpreted considering 
the information in the literature and by studying the 
network similarity among the urinary metabolites. 
In addition, representing the metabolism as a 
network may uncover unrelated but connected 
diseases’ fingerprints. The untargeted network 
similarity approach allowed to evaluate the 
relationship among the detected metabolites 
for biological interpretation. Such relationships 
are formalized as networks, where the nodes 
correspond to the metabolites or features, and edges 
connect nodes if the corresponding metabolites 
are related. Interestingly, the comparison between 
the two networks corresponding to the two models 
(F508del/F508del vs. T338I/T338I and F508del/
F508del vs. F508del/T338I) showed some diversity 
of correlations between the metabolites identified, 
reflecting the different metabolic hierarchies 
involved in the pathology.

As expected from the clinical phenotypes, 
glucose is a hub when comparing F508del/F508del 
vs. T338I/T338I and F508del/F508del vs. F508del/
T338I genotypes. Glucose is related to other 
sugars, such as maltose, which strongly decreases 
in the mild form of CF (T338I). In contrast, in the 
severe form, these sugar metabolites increase in 
urine, due to the pancreatic involvement typical 
of patients with severe genotypes [24]. Pancre
atic endocrine dysfunction, with consequently 
reduced insulin secretion, is responsible for the 
first phase of glucose intolerance and, subse
quently, CF-related diabetes, both conditions 
that could justify the increase in urinary glucose 
[25, 26]. Another constituent is glutamine, 
which increased in both networks in patients 
affected with the T338I mutation. Glutamine is 
a precursor for gluconeogenesis, the process of 
glucose production from other non-carbohydrate 
constituents, which is a central metabolic path
way in the liver that allows the maintenance of 
blood glucose levels in fasting and starvation 
conditions following depletion of glycogen 
stores. Therefore, its increase may be interpreted 
as a homeostatic mechanism for glucose levels. In 
contrast, homozygous F508del/F508del displayed 
a reduced presence of glutamine, probably linked 
to its use for gluconeogenesis [27].
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Another network-shared metabolite is scyllo-
inositol, which appeared to be strongly increased 
in patients with the F508del/F508del genotype. It 
is a derivative of cyclohexane with six hydroxyl 
groups, and for this reason, it is also known as 
sugar alcohol. It plays an essential role in various 
cellular functions, including cell signalling, mem
brane integrity, and regulation of ion channels. 
While inositol has been studied in several disease 
conditions (such as intrauterine growth restriction) 
[28], its role in CF is still under investigation. The 
relationship between inositol, inositol derivatives, 
and enzymes involved in its metabolism concern 
its crucial role in cell signalling in various cellular 
processes, including the metabolism of glucose 
and lipids. Therefore, it could be intended as a 
marker of reduced pancreatic activity in the severe 
form of CF [29]. 

Moreover, our study indicated a reduced 
urinary level of pyruvic acid and citric acid in 
the homozygote F508del population. Pyruvic 
acid, an aliphatic monocarboxylate and glycolytic 
end-product, enters mitochondria via the inner 
membrane monocarboxylate transporter and is 
central to cellular energy production. Moreover, 
it incorporates antioxidant properties due to 
its α-keto-carboxylate structure, enabling it to 
neutralize peroxides and peroxynitrite directly [30]. 
Citric acid is a tricarboxylic acid, an intermediate 
metabolite of the Krebs cycle. Although the citric 
acid cycle plays a primary role in catabolism, 
anabolism, and energy production, it also supplies 
NADH and FADH2, important antioxidant agents. 
The reduced pyruvic acid and citric acid levels 
in the severe population (F508del homozygote) 
may indicate the presence of abnormal oxidative 
stress in CF [31]. As such, the role of oxidative 
stress in the progression of lung injury in severe 
homozygote F508del patients has been widely 
recognized and well described in the literature. 
It has been recently shown that, in patients with 
CF, there is an essential deficit of antioxidant 
molecules and an increase in oxidative stress [32]. 
The continuous imbalance between oxidant and 
antioxidant species led to chronic inflammation, 
which contributes to persistent cellular damage 
and prevents proper airway remodelling.

HPHPA resulted statistically increased in the 
heterozygote F508del/T338I population compared 
with the homozygote F508del population. It is a 
frequently detected organic acid in human urine, 
which has recently been reported as an abnormal 
phenylalanine metabolite resulting from bacterial 

metabolism in the gastrointestinal tract. HPHPA 
appears to derive from the action of intestinal 
bacteria of Clostridia species such as C. difficile 
[33-35]. C. difficile infection is often associated 
with antibiotics, the latter being frequently taken 
by patients with CF, making them patients at high 
risk of intestinal dysbiosis. The results confirm 
the known alteration of the intestinal microbiota 
of patients with CF [36]. 

The 4-hydroxyphenylacetic acid resulted sta
tistically increased in the homozygote F508del 
population only in the comparison with the 
homozygote T338I population, while its precursor 
tyrosine resulted statistically increased in the 
homozygote F508del population both in the 
comparison with the homozygote T338I population 
and in the comparison with the heterozygote 
F508del/T338I population. Tyrosine is commonly 
used to screen small intestine diseases and bacterial 
overgrowth syndromes [37]. In particular, higher 
levels of 4-hydroxyphenylacetic acid have been 
associated with an overgrowth of small intestinal 
bacteria of Clostridia species, including C. 
difficile, C. stricklandii, C. lituseburense, C. sub­
terminale, C. putrefaciens and C. propionicum, 
that is considered a dysbiotic profile [38]. Recent 
metabolomics studies conducted on fecal samples 
from pediatric and adult subjects have already 
demonstrated that the composition of the intestinal 
microbiota of CF subjects differs significantly 
from that of healthy controls [39-40]. 

A sign of nutrition deficiency in CF patients 
can be stated by measuring leucine and its 
cometabolites levels, such as 3-hydroxy-3-
methylglutaric acid and 3-hydroxyisovaleric acid, 
which are the primary metabolites of the L-leucine 
pathway. The presence of these two metabolites 
with significant but opposite trends in the urine 
of the homozygote F508del population can be 
a sign of nutritional problems and muscle mass 
loss, commonly present in 25-30% of children 
with CF [41]. Notably, while life expectancy for 
severe patients has gradually improved during the 
last decades, nutrition is still a critical component 
for managing CF, and nutritional status is directly 
associated with both pulmonary involvement and 
survival. Therefore, an increased concentration of 
3-hydroxy-3-methylglutaric acid and a reduced 
concentration of 3-hydroxyisovaleric acid in the 
severe population could be intended as indicators 
of the need for energy supplements [42]. 

Finally, urine methylhistidine, either 1-methyl
histidine or 3-methylhistidine, is a potential bio
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marker for evaluating preclinical myopathy and 
muscle protein turnover. In severe CF patients, 
peripheral muscle dysfunction is an important 
systemic consequence of CF with significant 
clinical implications, such as exercise intolerance 
and reduced quality of life. Therefore, increased 
methylhistidine could be considered an indicator 
of muscle dysfunction [43]. 

Limitations and future direction

Although the findings of this study provide 
valuable insights and raise important hypotheses 
regarding metabolites alterations in CF, the 
small sample size of 35 subjects represents a 
significant limitation. This limited cohort reduces 
the statistical power of the analysis, making it 
difficult to draw definitive conclusions. Future 
research should aim to validate these findings 
in larger, more diverse cohorts, ideally through 
multicenter studies. Expanding the sample 
size will not only enhance the robustness of 
statistical analyses but also allow for subgroup 
comparisons and more detailed stratification 
based on clinical variables such as medication  
use. 

Conclusions

Overall, this study creates a basis for future 
metabolic indicators of CF evolution. Many of the 
identified metabolites and pathways have potential 
as biomarkers to predict current and future disease 
and assess the impact of targeted therapies. 
While promising metabolites for describing and 
predicting CF have also been identified in multiple 
studies, further validation and exploration are 
needed. This study was the first in this field that 
combined metabolomics and network analyses 
from different CF genotypes. Our results may be 
important for a better understanding of the role 
played by the metabolism in the progression of 
this disease. 
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