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Abstract

Neural tube defects (NTDs) are common significant congenital 
malformations caused by very early disruptions in the development of 
the brain and spinal cord. They are caused by a neurulation failure, which 
happens about the 28th day after conception. Folates and vitamin B12 
(vitB12) deficiencies, as well as hyperhomocysteinemia and MTHFR C677T 
polymorphism, are the common risk factors studied for the occurrence of 
these birth defects. In this study, we reported the roles of folates, vitB12, 
homocysteine, MTHFR gene and their relation with the appearance of NTDs. 
We also discuss prevention strategies, such as food fortification with folic 
acid, to encourage developing countries to adopt these recommendations in 
order to prevent these birth defects in subsequent pregnancies.
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Introduction

Neural tube defects (NTDs) are congenital 
malformations of the central nervous system, 
which appear during the 4th week of embryonic 
development [1]. 

Sometimes the closure of the neural tube is 
not completed and the neuropores, cranial and 
caudal, remain open. These two embryopatho
logical events result in NTDs, with anen
cephaly and spina bifida being the most well- 
known [2].

Several factors have been studied as potential 
causes of NTDs.

Overall, NTDs are currently considered 
multifactorial genetic anomalies, implying that 
both genetic and environmental factors may 
play a role in the appearance of these birth  
defects [3].

Numerous studies have highlighted a relation
ship between NTDs and a folate deficiency at 
the begining of pregnancy. Indeed, 50% to 70% 
of NTDs are prevented by the periconceptional 
intake of folic acid [4-6].

Folic acid may not reduce the risk of NTDs 
with the same degree in all ethnic groups [7, 
8]. This suggests that genetic factors may be 
involved and raises the suspicion of the influence 
of folate metabolism in particular through gene 
polymorphism. As a result, a lot of studies 
have been done to determine the genetic and 
biochemical causes of NTDs.

In this review, we documented the functions 
of folates, vitamin B12 (vitB12), homocysteine 
(Hcy), 5,10-methylene-tetrahydrofolate reductase 
gene (MTHFR) and their relationship with the 
development of NTDs. We also provide ways 
to prevent these birth anomalies in future preg
nancies, like fortifying foods with folic acid. 
This will help developing nations to follow these 
guidelines.

Folates

The origin of the name folates comes from the 
Latin folium, which means leaf, because these 
substances were isolated from spinach leaves in 
1941 by Mitchell and his collaborators.

Folate is a water-soluble vitamin that belongs 
to group B. It is also called folic acid (the synthetic 
form of folate), pteroylmonoglutamate, folacin, 
vitamin BC, vitamin B9, and Lactobacillus casei 
factor [9].

Nutritional intake

Humans cannot synthesize folates, so intake 
is dependent on food sources. Yeast extracts, 
liver, kidney, green leaves, vegetables and citrus 
fruits are foods rich in folates. Bread, potatoes, 
and dairy products are medium-level sources, but 
because they are consumed in large quantities, 
they contribute significantly to folates intake  
[10]. 

The majority of these folates (80%) are 
reduced methylated (60%) and formylated (20%) 
derivatives of protein-bound folylpolyglutamates. 
Only 20% is provided in the form of unsubstituted 
derivatives. Furthermore, a small quantity can be 
directly provided by the bacterial flora inhabiting 
the digestive tract [11].

Normal plasma folate levels are 5 to 15 µg/L. 
In the United States, the recommended nutritional 
intake for adults is 400 µg/day of dietary folate 
equivalent, 600 µg/day during pregnancy and 
500 µg/day during lactation. In Europe, the 
recommended intakes are: 100-300 µg/day from 
birth to puberty, 200-400 µg/day in adults and 400 
µg/day in pregnant women [12].

The role of folates

During the transmethylation reaction, N
5
-

methyltetrahydrofolic acid provides a methyl 
group that will be transferred to Hcy with 
the aid of vitB12 (a cofactor for methionine 
synthase). Tetrahydrofolic acid is regenerated 
as a result of this reaction, and methionine is 
produced, which can subsequently be converted to 
S-adenosylmethionine. 

The latter is the universal donor of methyl 
groups for methylation reactions in the body (DNA, 
proteins, lipids, etc.) leading to the formation of 
S-adenosylhomocysteine [13].

Folate deficiency

Folate deficiency is one of the most common 
vitamin deficiencies in the world and poses 
a public health problem in both developing 
and industrialized countries. Folate deficiency 
can occur at any age and is often the result of 
malnutrition, malabsorption, alcoholism or the use 
of certain medications.

Also, genetic alterations in folate absorption, 
transport or metabolism can lead to folate 
deficiency [14].
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Prevalence of folate deficiency

Folate deficiency is defined for plasma folate 
concentrations below 3 ng/ml and erythrocyte 
folate concentrations below 150 ng/ml. According 
to data collected in the United States during the 
Second National Health and Nutrition Examination 
Survey (NHANES II), folate deficiency would 
reach approximately 10% of Americans aged 
between 20 and 44 years [15]. In agreement with 
these data, an epidemiological study, carried out 
on 423 healthy Americans, has shown that 23% of 
studied subjects had serum folate concentrations 
lower than 3 ng/ml despite a dietary folate intake 
greater than 200 µg/day corresponding to currently 
recommended intakes [16]. 

Vitamin B9 (folate) deficiency is also common 
among elderly people, with reported prevalences 
of up to 25% in nursing homes for dependent 
elderly people [17].

Vitamin B12

Nutritional data: food sources and needs

VitB12 or cobalamin (Cbl) was discovered in 
1948. Foods containing Cbl are of animal origin 
such as kidneys, offal, liver, meat, milk, eggs, 
seafood and fish, in addition to some rhizome 
plants [18].

VitB12 is obtained exclusively from dietary 
sources, with daily requirements estimated between 
2 and 5 μg. A balanced diet usually provides 
quantities significantly higher than physiological 
needs [19].

In the United States, the intake recommended 
by the Food and Drug Administration (FDA) 
is 2.4 µg per day for adults [20], and between 
1 and 2 µg per day for children. Requirements 
increase significantly during periods of growth, 
hypermetabolic state, gestation and breastfeeding 
[21]. They are 2.6 µg during pregnancy and 2.8 µg 

during breastfeeding. The reserves, mainly hepatic, 
are significant (more than 1.5 mg), explaining 
the delay of 5 to 10 years between the onset of 
a B12 deficiency and the appearance of clinical 
manifestations [20].

Role of cobalamins

As mentioned previously, methionine synthase 
catalyzes the methyl-Cbl dependent (re)methylation 
of Hcy to methionine within the methionine cycle; 
a reaction required to produce this essential amino 
acid and generate S-adenosylmethionine, the most 
important cellular methyl-donor.

Blocking this reaction has two consequences:
1.	 blocking the regeneration of methionine, which 

disrupts the metabolism of sulfur amino acids 
and explains the increased urinary excretion of 
Hcy; 

2.	 the absence of regeneration of tetrahydrofolate 
which prevents the reconstitution of N

5
-

methylene tetrahydrofolic acid 4, a thymidylate 
synthetase coenzyme. This results in a blockage 
of DNA synthesis since dUMP (deoxyuridylate) 
cannot be converted into dTMP (thymidylate) 
explaining partly the medullary megaloblastosis 
caused by Cbl deficiency [22].

Vitamin B12 deficiency

Tab. 1 shows the main definitions of vitB12 
deficiency proposed in the literature, in the absence 
of a standardized and formally reproducible vitB12 
biological assay and well-established standards 
[20, 22-25].

In developing countries, prevalences of vitB12 
deficiency of more than 40% have been reported [22].

The etiology of this deficiency was mainly 
dominated by poor dietary intake in a population 
made up mainly of children.

On the other hand, in industrialized countries, 
maldigestion of dietary Cbls was constantly pre

Table 1. Definitions of vitamin B12 (vitB12) deficiency.
Definitions Reference
VitB12 < 200 pg/ml + clinical (neurological) signs and/or hematological abnormalities compatible with 
vitB12 deficiency Andrès et al., 2004 [22]

VitB12 on two occasions < 200 pg/ml (or 150 pmol/L) Andrès et al., 2005 [20]
VitB12 < 200 pg/ml + total Hcy > 13 μmol/L or methyl malonic acid > 0.4 μmol/L (in the absence of renal 
insufficiency, folate and vitamin B6 deficiencies and/or the presence of a heat-labile mutant of methyl 
tetrahydrofolate reductase)

Klee, 2000 [24]

VitB12 < 148 pmol/L Gyawali et al., 2023 [25]

Hcy: homocysteine; vitB12: vitamin B12.
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dominant compared to other etiologies of Cbl 
deficiency and mainly affects patients of advanced 
age [26].

Socio-economic conditions and their impact on 
the standard of living and diet of patients certainly 
explain this observation [27].

In addition, it has been reported that a female 
predominance has been objectified in certain 
studies but this remains to be verified [28].

VitB12 deficiency is common in the elderly, with 
a prevalence of 12% among non-institutionalized 
elderly subjects in the Framingham cohort [29].

Some studies observed higher prevalences 
among hospitalized or institutionalized elderly 
subjects [30], while other studies did not report 
differences between “community” or “institution
alized” elderly populations [31]. 

However, certain studies have shown the 
influence of other factors, particularly ethnic 
factors, on the etiological profile of vitB12 
deficiency. In an American study of 202 subjects, 
Latin American, African American origins and 
advanced age were highlighted as independent risk 
factors. In an Indian series, a greater frequency of 
the deficit was noted in patients of Indian origin 
compared to patients of other ethnicities [32].

The etiology of vitB12 deficiency is dominated 
in adults and the elderly by two causes. The classic 
Biermer disease (which corresponds to an illness 
due to a deficiency in vitB12, itself resulting from 
a lack of secretion of intrinsic factor) represents 
20% to 50% of cases. The syndrome of non-
dissociation of vitB12 from its carrier proteins or 
maldigestion of dietary vitB12, described in the 
1990s, represents more than 60% of cases [20].

Homocysteine

Hcy is an amino acid discovered in 1932 by 
Du Vigneaud during his study on the chemistry of 
sulfur amino acids [33].

It is a sulfur amino acid derived from the 
demethylation of methionine provided by a diet 
rich in animal proteins [34].

Plasma levels are considered normal between 
5 and 15 µmol/L. It does not exceed 15 μmol/L in 
healthy subjects [34].

Biological functions of homocysteine

Hcy has major biological functions such as 
an intermediate in the methionine cycle and a 
substrate for folate recycling [35].

Hyperhomocysteinemia

Under physiological conditions, a balance be
tween Hcy formation and degradation is present 
and approximately 50% of Hcy is remethylated 
to methionine. In the case of an excess of Hcy, 
the latter passes into the blood circulation, thus 
causing an increase in the plasma level of Hcy 
(this is hyperhomocysteinemia – HyperHcy), or an 
increase in the level of Hcy in the urine (in this 
case we speak about hyperhomocystinuria) [36].

The definition of HyperHcy is established 
according to an arbitrary threshold corresponding 
to the 95th percentile of the distribution of Hcy ​​
concentration in a population considered normal. 
Fasting Hcy level is normally between 5 and 15 
µmol/L in adults. In people over 60 years old, it 
must be less than 20 µmol/L. In pregnant women 
and children, the limit is reduced to 10 µmol/L.

Fasting HyperHcy is classified into three 
categories: moderate (16-30 µmol/L), intermediate 
(31-100 µmol/L), and severe (> 100 µmol/L) [34].

Folate, cobalamin, homocysteine ​​and neural 
tube defects

When a famine struck the Dutch in 1944, it was 
observed that the incidence of spina bifida doubled, 
raising the first suspicion that the etiology of NTDs 
could be linked to diet. This suggested that vitamin 
deficiencies, especially folate, are at least partially 
responsible [37].

The specific role of folates in the development 
of NTDs was identified in 1964 by Hibbard, who 
observed metabolic abnormalities in mothers of 
children with myelomeningoceles and found that 
children of folate-deficient mothers had a higher 
rate of these birth defects (3%) compared to 
controls (1.6%) [38]. 

Smithells et al., in 1976, demonstrated that 
these mothers had a decrease in erythrocyte 
folates during the first trimester of pregnancy. So, 
they speculated that periconceptional folic acid 
supplementation would reduce the risk of NTD 
recurrence [39].

Thus, in 1980, they carried out the first non-
randomized intervention study, supplementing 
women who had already given birth to a child with 
NTDs with a multivitamin complex containing 
360 μg of folic acid. Compared to women who did 
not utilize supplements, the risk of having another 
child with NTDs was 86% lower for these mothers 
[40]. 
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Folate’s ability to prevent NTDs was clearly 
established in 1990s. A prospective, randomized, 
double-blind trial conducted in 1991 examined 
the relative risk of recurrent NTDs in women who 
received 4 mg of folic acid daily or a combination 
of seven other vitamins. The results showed a 
relative risk of 0.28 (95% CI: 0.12-0.71). Of the 
33 centers that took part in this study, 17 were 
situated in the high-incidence nation of the United 
Kingdom, while the remaining centers were spread 
across 6 other nations, including France.

In 1999, the Centers for Disease Control and 
Prevention (CDC) reported that supplementation 
with 0.4 mg led to a reduction in the incidences of 
NTDs of 79% in northern China compared to 41% 
in southern China [41].

Several studies have suggested the protective 
effect of folate consumption, including descrip
tive epidemiological studies, case-control studies, 
cohort studies, and randomized and nonrandomized 
intervention studies [4, 42, 43]. In a study carried 
out in Hungary, the prevalence of all malformations 
was reduced by half in the group supplemented 
with 0.8 mg of folic acid compared to the group 
receiving mineral supplementation, with no NTDs 
cases recorded for the folic acid supplemented 
group [6, 44].

In another randomized trial, folic acid 
supplementation reduced the risk by 75%, while 
other vitamins were associated with a 20% of 
reduction [4]. 

In a large retrospective study concerning 
women during the first half of pregnancy, Kirke 
et al. [45] found significantly lower levels of 
(plasma, erythrocyte) folate, and serum vitB12 
in mothers of fetuses with NTDs. This suggests 
that an associated vitB12 deficiency may also be 
involved [46]. 

 These studies strongly support widespread 
folic acid supplementation as a preventive measure 
against NTDs.

Then, these findings prompted us to deepen our 
understanding of folate metabolism, and to look 
for possible disturbances in subjects with NTDs or 
their parents.

Several hypotheses have attempted to provide 
an explanation [47, 48]. None is completely 
verified, but they all point to a folate deficiency at 
a critical moment in the embryonic development 
of the central nervous system which can act at the 
maternal level or directly on the embryo. 

In embryonic brain cell cultures, studies have 
shown that decreasing folate has inhibited the 

proliferation of astrocytic and neuronal stem cells 
[49]. Similarly, the use of methotrexate, an inhibitor 
of folate metabolism, has decreased proliferation 
and increased apoptosis of stem cells by modifying 
the quantity and pairing of nucleotides to DNA 
during the S phase of the cell cycle [50].

The mechanism of action of folates appears to 
be twofold: on the one hand, as a cofactor in the 
biosynthesis of DNA and RNA, and on the other 
hand, as a donor of methyl radicals in the methylation 
cycle which converts Hcy to methionine [51].

The intervention of folates in the metabolism of 
Hcy may be an element which partly explains their 
preventive effect [52]. 

Indeed, low serum levels of folate and vitB12, 
but especially high levels of Hcy, have been 
observed in women carrying or having carried 
fetuses with NTDs. In particular, an Irish study 
observed that in pregnant women of NTDs fe
tuses, serum Hcy ​​levels were significantly higher 
than those of healthy fetuses. This suggested a 
deficiency in the remethylation of Hcy, which 
requires a methyl group delivered by 5-methyl-
tetrahydrofolate [53].

 In 1991, Steegers-Theunissen et al. reported 
elevated Hcy levels in women who carried a fetus 
with NTDs and suggested that maternal HyperHcy 
was a risk factor for this birth defect [54]. 

The association of NTDs with HyperHcy has 
been the subject of various publications [55, 56].

In this sense, vitB12 deficiency also causes 
an elevation of Hcy ​​in the fetus and increases 
developmental alterations in its nervous system 
during gestation [57]. In infants, vitB12 deficiency 
can cause various problems, such as severe 
hypotonia and apathy, which could reflect a 
deficiency in myelination [58]. Furthermore, 
hereditary transcobalamin II deficiency causes 
neurological abnormalities characterized by 
intellectual delay, ataxia, etc. [59].

HyperHcy is certainly a sensitive marker 
of folate decline, but genetic causes are also 
responsible [60].

The hypothesis of enzyme polymorphisms 
occurring at this level of the metabolic chain is 
raised, firstly the 677 C>T (C677T) mutation of 
MTHFR [61]. 

Studies have shown that the non-closure of the 
neural tube is not due to a direct action of Hcy, 
but to an abnormal functioning of methionine 
synthase.

The alteration of the enzyme would certainly 
cause an accumulation of Hcy but also a deficit of 



6/10 Nasri

Journal of Pediatric and Neonatal Individualized Medicine • vol. 14 • n. 2 • 2025www.jpnim.com  Open Access

methionine necessary for the synthesis of myelin. 
Therefore, there is an association between neural 
tube closure anomalies and HyperHcy, but these 
pathologies most often result from a deficiency in 
methyl groups [56].

Another MTHFR polymorphism (1298 A>C 
[A1298C]) has been shown to be associated with 
the occurrence of NTDs. 

The association of these 2 polymorphisms, 
C677T and A1298C, could increase the risk of 
NTDs [62], and would also be responsible for 
spontaneous abortions [63]. 

More recently, the possible responsibility of 
autoimmune mechanism was raised in 9 mothers 
(out of 12 studied) who had a child affected by 
NTDs. These mothers carried anti-folic acid 
receptor antibodies whose pathogenicity has been 
demonstrated in animals [64].

Although the majority of studies have shown 
a protective effect of folic acid supplementation, 
some analyzes have failed to demonstrate this role.

These studies highlighted that, in these women, 
the problem is more complex than a simple folate 
deficiency. The protective effect of folic acid could 
be the correction of increased needs by genetic 
predisposition [65].

MTHFR C677T genetic polymorphism and neural 
tube defects

The MTHFR C677T polymorphism consists of a 
substitution of a cytidine by a thymidine at position 
677 on exon 4, in the catalytic domain of the enzyme. 
At the protein level, this autosomal mutation results 
in a modification of a valine to alanine, leading to a 
drop in enzymatic activity, which varies depending 
on the allelic status, of the order of 30-40% in 
heterozygotes and 60-70% in homozygotes. 

When this polymorphism is present in the 
homozygous form, the enzyme becomes less active 
and more thermolabile, causing a rise in Hcy levels 
and a decrease in folate levels [66].

The frequency of C677T homozygosities varies 
between geographic regions. A high frequency is 
observed particularly in Europe (between 10% and 
20%) unlike other continents (Africa: < 1%) [67].

In the Maghreb countries, the results showed an 
allelic frequency of 17.8% in Tunisia [68], and 8.5% 
in the Algerian population of the Batna region [69].

The C677T variant is the first genetic risk 
factor proposed to cause this anomaly. In the 
Netherlands (1995), Van der Put et al. were the first 
to demonstrate that C677T mutation in the MTHFR 

gene is more prevalent in NTDs patients and their 
mothers compared to controls. The C677T mutation 
was associated with a 2.9- to 3.7-fold increased 
risk in infants with spina bifida and their mothers 
[70]. This observation was further supported by two 
studies from the United States and Ireland, in which 
NTDs were 2 to 7 times more common in infants 
with homozygous mutation [71].

Many studies have reported a high prevalence 
of homozygosity (TT) in mothers of an infant with 
NTDs compared to controls [72-74]. This confirmed 
that homozygosity for the MTHFR C677T gene 
polymorphism could be a risk factor for NTDs.

Prevention

Educational interventions

The educational programs were first launched in 
the United States and Canada. This intervention is 
in use in most other countries. In some studies, very 
high folic acid utilization has been demonstrated 
among high socioeconomic and cultural status 
women (Prevention program for reducing risk for 
neural tube defects – South Carolina, 1992-1994, 
1995). A Canadian study revealed that the number 
of NTD cases did not decrease while educational 
initiatives were in place [75].

Folic acid fortification

According to current recommendations from 
Health Canada, women should ingest at least 400 
μg of folic acid per day to reduce the risk of NTDs 
in the fetus.

Since the majority of people cannot obtain 
this amount of folate from unfortified foods, 
many nations, notably the United States, United 
Kingdom, and Canada, have implemented programs 
to boost folic acid intake. These programs involve 
promoting the use of oral folic acid supplements 
and fortifying grain products with folic acid. 
Foods fortified with folic acid have been required 
in an effort to enhance the daily consumption 
of folic acid for all women of reproductive age. 
Supplementing fortified cereals with acid folic has 
been mandatory since 1998 [76].

Foods enriched with folic acid

To correct dietary folic acid insufficiency in 
North America, the enrichment of flour and cereal 
products (including ready-to-eat cereals and pasta), 
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at a rate of 150 μg of folic acid / 100 g, became 
mandatory in 1998.

Foods were fortified to increase daily folic acid 
intake by an average of approximately 100 μg. 
An American study demonstrated an increase in 
erythrocyte folate concentrations from 527 nmol/L 
to 741 nmol/L in 38,000 women of childbearing 
age after the introduction of folic acid fortification 
[77].

Furthermore, a large pharmacokinetic modeling 
study carried out in China demonstrated the benefi
cial effect of even higher levels of erythrocyte 
folate (up to 1,500 nmol/L) [78].

Fortification of foods with folic acid has 
been shown to be very effective in reducing the 
prevalence of NTDs at birth. Indeed, after folic 
acid enrichment, the prevalence of spina bifida 
at birth decreased more than 50% in Canada and 
that of other NTDs subtypes approximately a third 
[79].

Furthermore, the East-West gradient in NTDs 
levels was reduced considerably after the adoption 
of folic acid fortification [79]. Similar reductions 
of 50% to 70% in NTDs at birth have been reported 
in other countries where mothers increased their 
folic acid intake [80].

Use of supplements was the main predictor of 
optimal rates and was correlated with favorable 
socioeconomic status [81].

Oral folic acid supplements

Despite the abundance of data demonstrating the 
effectiveness of folic acid enrichment in reducing 
NTDs, a high proportion of women still have a 
folic acid deficiency at the begining of pregnancy. 
Health Canada and the Public Health Agency of 
Canada recommend that women of childbearing 
age take a daily supplement of 0.4 mg of folic acid 
to reduce the risk of NTDs [82].

This recommendation is supported by detailed 
guidelines from the Society of Obstetricians and 
Gynecologists of Canada (SOGC). In accordance 
with these recommendations, healthy women 
should consume a diet high in folic acid, which 
includes taking 0.4-1.0 mg of folic acid-containing 
multivitamin supplements daily, for at least 2 to 
3 months prior to conception, during pregnancy, 
and during the postpartum phase (for at least 4 to 
6 weeks and as long as breastfeeding is continued) 
[82].

According to the SOGC, women with a family 
history of NTDs or other health issues should 

increase their intake of foods high in folate and take a 
daily multivitamin supplement that contains 5 mg of 
folic acid from at least 3 months prior to conception 
until 10 to 12 weeks after conception [82]. 

In comparison to the prevalence observed from 
January 1995 to December 1996 in the United 
States, data noted between January 1998 and 
December 1999 showed a 31% decrease in the 
prevalence of spina bifida and a 16% decrease in 
the prevalence of anencephaly [83]. 

The overall increase in folate levels among 
women of childbearing age was notable, but it was 
less pronounced among high-risk groups, such 
as those of Mexican-American origin and low-
socioeconomic status. Oral intake of folic acid 
in the fully absorbable medicinal form must be 
prescribed by a doctor. In addition, free distribution 
of folate supplements to women of childbearing 
age, particularly those who are disadvantaged and 
at high risk, is strongly recommended [84]. 

Conclusion

Numerous studies have shown that folic acid 
deficiency, particularly in the early stages of 
pregnancy, is linked to the development of NTDs. 
However, even if this prevention is not complete, 
it has been demonstrated that women taking this 
vitamin supplement have a protective effect during 
the periconceptional phase. This is why developing 
countries must adopt initiatives to increase folic 
acid intake. Efforts must be made by specialists 
to educate women of childbearing age about the 
importance of taking folic acid supplements, 
especially in the periconception period.
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