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Abstract

The hemostatic system (HS) is crucial for human survival, both 
by preventing excessive bleeding and also through close links to the 
immune system. Both systems cooperate to defend us from attacks 
by microorganisms and viruses. However, the behavior of the HS 
changes radically in the presence of cancer, becoming its powerful ally. 
Excessive individual responses of the HS to sepsis or virus attacks also 
require further investigation. The current review aims to explain the main 
pathophysiological mechanisms responsible for the behaviors of the HS in 
inflammation and cancer. We address the three main components of the HS, 
i.e., platelets, blood coagulation, and fibrinolysis, separately, and provide 
detailed information on their different activities in relation to inflammation 
and cancer. A better understanding of the mechanisms underlying the HS 
may help to improve daily clinical practice. This review also considers the 
possible roles of anticoagulant and antifibrinolytic drugs in counteracting 
the abnormal reactions of the HS during the course of infectious diseases 
and cancer. Further ad hoc studies are needed to assess if these drugs can 
reverse or at least reduce the adverse impacts of the HS in infections and 
cancer.
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Introduction

The hemostatic system (HS) is crucial for our 
survival, by both protecting against excessive 
bleeding and also via close links to the immune 
system [1]. Both systems cooperate to defend 
us from attacks by microorganisms and viruses. 
However, the behavior of the HS changes radically 
in the presence of cancer, becoming its powerful 
ally. The current review aims to explain the main 
pathophysiological mechanisms responsible for 
the behavior of the HS in inflammation and cancer. 
We consider the three main components of the HS, 
i.e., platelets, blood coagulation, and fibrinolysis, 
separately, to provide more precise information 
on their different activities regarding the two main 
topics of this narrative review, i.e., inflammation 
and cancer. Furthering our understanding of the 
mechanisms underlying the HS may help to improve 
daily clinical practice, as well as guiding studies into 
the possible use of anticoagulant and antifibrinolytic 
drugs to counteract the abnormal reactions of the 
HS in infectious diseases and cancer. 

Materials and methods

We scanned the MEDLINE database up to 
December 2021 with the following keywords: 
“platelets” OR “blood coagulation” OR 
“fibrinolysis” AND “venous thromboembolism”, 
OR “haemorrhage” OR “infectious diseases” OR 
“pulmonary embolism” OR “arterial thrombosis” 
OR “cancer”. We limited our search to articles 
published in English. Articles were defined as 
eligible if they were related to the review topics 
and were published in peer-reviewed journals. 
We first screened articles retrieved from the 
electronic database by examining the titles and 
abstracts. Further critical review of full-text 
eligible articles was based on an evaluation of 

the described pathophysiology, methodology, and 
possible impact on the review topics. Articles were 
excluded if they were not closely related to the 
topics of the review or were not published in peer-
reviewed journals. 

Platelets

Platelets play a role in the hemostatic process 
by helping to prevent mucocutaneous bleeding [2], 
as well as being involved in the pathogenesis of 
atherosclerosis and arterial thrombotic events [3]. 
Platelets can thus act as both friends and enemies, 
depending on the settings of their actions.

Importantly, platelets also mediate the rela
tionship among hemostasis, the immune system, 
and inflammation [4]. During their circulation 
in the vasculature, platelets are extremely 
sensitive to foreign invaders, such as viruses, 
bacteria, and parasites. They cooperate in host 
defense by helping to kill pathogens, either 
directly or by facilitating their clearance by 
activating macrophages and inducing neutrophil 
extracellular traps (NETs) [5, 6] (Fig. 1). 
Thrombocytopenia is a common clinical feature 
of early sepsis, possibly because platelets are 
consumed during these functions, although other 
causes have also been considered [7]. Platelets 
become activated following antigen recognition, 
depending on the individual response. However, 
this may also be dangerous, by enhancing 
inflammation and provoking endothelial damage 
and thrombosis [8]. Platelets are hyperactivated 
following infection with the SARS-CoV-2 virus 
(COVID-19), thus contributing to the thrombo-
inflammatory features of the disease. SARS-
CoV-2 RNA was shown to be associated with 
platelets in 114 patients with mild or severe 
COVID-19 infections. Moreover, platelets can 
enhance the plasma cytokine load [9] and disrupt 
the balance between von Willebrand factor and 
ADAMTS13 [10].

Platelets may also be activated by thrombin, 
the final protease of blood coagulation, during 
disseminated intravascular coagulation (DIC) 
[11]. A platelet count less than 50 × 109/L is 
one criterion of the International Society on 
Thrombosis and Haemostasis (ISTH) score for 
the laboratory diagnosis of DIC [12]. In sepsis 
with DIC, platelets are activated by both thrombin 
and inflammatory molecules, such as platelet-
activating factor [13]. P-selectin is then expressed 
on the platelet surface, inducing them to adhere 
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to leukocytes and endothelial cells [14]. Platelets 
thus comprise part of the HS, which functions to 
defend the host from bleeding and from foreign 
invaders; however, their behavior changes when 
the host develops a malignant neoplastic disease. 
Although platelets have antineoplastic properties, 
their pro-neoplastic properties become much more 
pronounced, and even though platelets recognize 
neoplastic cells as foreign invaders, they may 
change from “allies” to “enemies” [15]. Platelets 
try to exert the defensive actions that they employ 
against bacteria and viruses against the cancer 
cells, but the latter exploit their capabilities, 
including their array of enzymatic functions and 
adhesive proteins [16]. Cancer cells thus utilize 
the platelets’ functions to help them to proliferate 
and spread, becoming part of the cancer’s invasion 
strategy [17]. The defensive role of the platelets 

in cooperating with the innate immune system 
against foreign invaders is eventually overcome 
by cancer. Cancer cells can activate platelets via 
many mechanisms [18]. They stimulate platelet 
aggregation by expressing ADP, which activates 
platelets via the P2Y1 and P2Y2 receptors, which 
induce platelets to release ADP, so causing further 
aggregation [19]. Cancer cells can also bind the 
FcγRIIa receptor on the platelet surface to provoke 
dense-granule secretion [20]. Other mechanisms 
also favor cancer cell cross-talk with platelets. 
Aggregated platelets surround cancer cells, 
thus protecting them from immune elimination 
(Fig. 2), while another mechanism promotes the 
adhesion of tumor cells to the endothelium, thus 
facilitating their extravasation and metastasis [21, 
22]. Angiogenesis is also facilitated by platelets 
via microparticles, microRNAs, and several 

Figure 1. Platelets, bacterial and neutrophil extracellular trap (NET). 
Platelets cooperate with neutrophils with the aim to trap bacteria and virus. They can activate an important defensive system: the NET. 
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surface receptors [23]. Moreover, platelets protect 
cancer cells from shear stress [24], help them to 
avoid natural killer cells, and induce the cancer 
cells’ capacity to cross the endothelium and spread 
to distant organs [25]. Finally, platelets favor 
the malignant transition from an epithelial to an 
invasive mesenchymal phenotype, thus enhancing 
metastatic invasion [26]. However, platelets may 
also be helpful, via the analysis of so-called tumor-
educated platelets (TEP) by means of liquid biopsy 
obtained by blood sampling, in which spliced TEP 

mRNA can be detected as an important tool for 
reaching a cancer diagnosis [27]. 

Reducing platelet involvement in the neoplastic 
progression by inhibition of cyclooxygenase-1 
using low-dose aspirin has been proposed as an 
antineoplastic and antimetastatic strategy [28], 
with favorable results [29]. However, large 
clinical studies are needed to recommend aspirin 
both for the primary prophylaxis of cancer and in 
association with chemosurgical management of 
the disease. 

Figure 2. Platelets and cancer. 
Cancer cells can activate platelet aggregation, so escaping the immune system.
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Blood coagulation 

Blood coagulation acts synergistically with 
the immune system to counteract foreign attacks 
by microorganisms and viruses. The HS and 
immune systems have early origins and have 
co-evolved to defend the host [30]. Platelets 
are the natural support for blood coagulation 
activation [31], which can be triggered by several 
factors. First, monocytes release cytokines when 
stimulated by endotoxins or viruses, damaging 
the endothelial cells, which in turn express tissue 
factor, which triggers blood coagulation [32], 
while the monocytes themselves also express 
tissue factor, resulting in blood coagulation 
activation [33] (Fig. 3). Neutrophils stimulated 
by platelets form NETs, which can also directly 
activate blood coagulation [34]. Although these 
phenomena have evolved as a defensive host 
response against invaders, they may also have 
undesired effects. An excessive host response 
may be harmful to the host itself. For example, 
during sepsis or viral invasion, high levels of 
cytokines may attack the host [35], resulting 
in a severe inflammatory state and leading to 
diffuse fibrin formation and deposition [36]. 
Secondary fibrinolysis activation thus occurs, 
ultimately leading to DIC with a prothrombotic 
phenotype due to a fibrinolytic shutdown [37]. 
The consequence of this dysregulated massive 

blood coagulation activation is hampered by an 
endothelial prothrombotic reaction [38]. Notably, 
the ISTH criteria for a diagnosis of DIC only 
consider the laboratory parameters, without 
taking account of the clinical hemorrhagic 
features of the syndrome [39, 40]. COVID-19 
infection provides a practical example. Tang et 
al. showed that the ISTH criteria for DIC were 
present in most of their COVID-19 patients [41], 
but no clinical signs of overt DIC were reported. 
We challenged the conclusion of this study, 
stating that DIC was common during COVID-19 
infection, and proposed that DIC could be a 
local phenomenon in the lungs, with pulmonary 
thrombosis resulting from the host’s response 
to the virus attack [42]. This possible event was 
subsequently confirmed by histologic findings, 
which demonstrated diffuse intravascular fibrin 
deposition in the lungs [43]. On the other hand, 
we previously proposed the concept of pulmonary 
thrombosis in 2019, prior to the COVID-19 
pandemic. Indeed, the deposition of fibrin in the 
pulmonary vasculature has been recognized in 
chronic obstructive pulmonary disease, asthma, 
pneumonitis, drepanocytosis, Gaucher disease, 
and assisted reproductive procedures [44]. The 
classic definitions of pulmonary embolism should 
thus be revised to improve our understanding of 
the involvement of the lungs in inflammatory 
conditions. During SARS-CoV-2 infection, viral 

Figure 3. Blood coagulation and disseminated intravascular coagulation (DIC). 
Bacterial fragments activate monocytes, which release cytokines and expose tissue factor, the trigger of blood coagulation. The final 
outcomes are endothelial damage with secondary tissue factor exposition and production of thrombin, which provokes platelet aggregation 
and fibrin intravascular deposition. Fibrinolysis subsequently attacks fibrin, causing the release of D-dimer.  
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attachment to the endothelial cells via ACE2 
receptors is a crucial step in the development of 
the thrombotic features of the disease [45]. In this 
setting, monocytes play a crucial role, as described 
above. Overactivation of blood coagulation may 
again be fatal as a result of widespread occlusion 
of the vasculature. A therapeutic dose of heparin 
may be helpful in this setting, and has been shown 
to reduce mortality in non-critically ill patients 
with COVID-19 [46, 47].

Blood coagulation also plays an important 
role in cancer. Cancer cells per se have pro-
coagulative properties [48], which help can
cer cells to survive by producing an excess of 

thrombin, which in turn has a proangiogenic effect 
[49]. In contrast, there is an imbalance between 
thrombin formation and inhibition, in which 
the former is greatly enhanced. The reaction 
of the host may exacerbate this phenomenon, 
given that monocytes became activated after 
contact with cancer cells [50], thus producing 
more tissue factor, which in turn triggers 
blood coagulation [51]. These pathways imply 
significantly increased risks of both arterial and 
particularly venous thromboembolism (Fig. 4). 
The association between cancer and thrombosis 
is called “Trousseau syndrome”, named after the 
French doctor who first described it in 1865 [52, 

Figure 4. Cancer cells activate monocytes. 
Both expose tissue factor (TF), which induces a hypercoagulable state, so leading to vascular thrombosis (the “Trouseau syndrome”).
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53]. Given the important role of blood coagulation 
in cancer, extensive research has focused on the 
possible use of anticoagulants, such as warfarin 
and low-molecular-weight heparins (LMWHs), 
for increasing cancer survival independently 
of their role in treating and preventing venous 
thromboembolism [54, 55]. However, although 
both warfarin and LMWHs have demonstrated 
antineoplastic effects [56], many of the studies 
were small, addressed different types of 
cancer, and the results were often inconsistent 
[57]. Further well-planned and high-powered 
studies are therefore needed to determine if 
antithrombotic drugs, especially LMWHs and 
direct oral anticoagulants, could have therapeutic 
or prophylactic roles in improving cancer survival, 
as well as to investigate the types and stages of 
cancer that are most likely to be sensitive to this 
kind of drugs. 

Fibrinolysis

The fibrinolytic system was first described 
by Dastre at the end of the 19th century [58]. Its 
main function is to limit the growth of blood 
clots and promote their dissolution. It thus plays 
an essential role in the HS by modulating fibrin 
formation. Plasminogen cleaves fibrin via its 
activated form, plasmin [59]. Plasminogen is 
activated to plasmin by tissue-type plasminogen 
activator (t-PA), which is released by endothelial 
cells [60], and by urokinase-type plasminogen 
activator (u-PA) [61]. t-PA activity is strongly 
dependent on fibrin, because both t-PA and 
plasminogen bind to its lysine residues, thus 
using it as a cofactor for plasmin generation. 
However, plasmin formation by plasminogen 
activators is controlled by plasminogen activator 
inhibitors (PAI)-1 and PAI-2 [62], which are in 
turn controlled by α2-antiplasmin (α2-AP) after 
fibrin dissolution. Covalent binding to fibrin 
induced by factor XIII is important because it 
reduces the degradation of this glycoprotein 
[63]. The physiological importance of α2-AP 
has been highlighted in families with α2-AP 
deficiency, which, although rare, can cause 
severe bleeding, especially in early life [64, 65]. 
Fibrin formation is also controlled by thrombin-
activatable fibrinolysis inhibitor (TAFI), which 
is activated by thrombin. TAFI cleaves fibrin 
lysine residues, thus reducing the binding of both 
plasminogen and t-PA to fibrin and increasing 
the stability of the clot [66]. However, plasmin 

also exerts non-hemostatic actions, such as 
neutrophil and monocyte recruitment, smooth 
muscle cell proliferation, enhanced foam cell 
formation, and the release of cytokines, and has a 
negative effect on angiogenesis [67]. Fibrinolysis 
and inflammation are thus clearly closely linked. 
This association is not surprising, given that the 
HS, including fibrinolysis, acts together with 
inflammation in host defense, but chronic poor 
control of both systems can have pathologic 
consequences, such as atherosclerosis and lung 
diseases [68, 69]. Hyperfibrinolysis is a typical 
feature of DIC, as reported above, and is secondary 
to the widespread development of thrombi in the 
microcirculation. However, fibrinolysis may be 
inhibited during DIC secondary to endotoxemia 
or sepsis, by increased PAI formation (the so-
called fibrinolysis shutdown), leading to multiple 
organ failure [70, 71]. On the other hand, an 
exaggerated fibrinolytic response may occur 
during DIC because the excess plasmin formation 
overcomes its major inhibitor, α2-AP, so inducing 
breakdown of fibrinogen and clotting factors after 
fibrin dissolution. This results in severe bleeding, 
because the enhanced fibrinolytic activity is 
added to the consumption coagulopathy typical of 
DIC [72]. Thus, although the fibrinolytic system 
is a defensive mechanism, its activity can also be 
exploited by foreign invaders, such as bacteria 
and viruses, as described previously [73]. 

The fibrinolytic system is also involved in 
cancer [74], notably involving u-PA and PAI-1. 
u-PA induces the activation of metalloproteinases 
after the activation of plasminogen to plasmin, 
leading to lysis of the extracellular matrix and, 
thus, allowing cell migration [75] (Fig. 5). Plasmin 
can also favor tumor cell growth by stimulating 
growth factors, such as platelet-derived growth 
factor and fibroblast growth factor [76].

PAI-1 plays an intriguing role in cancer. It has 
been shown to counteract the pro-carcinogenesis 
action of u-PA and its receptor (u-PAR), but has 
also been involved in cancer progression [74]. 
Indeed, PAI-1 has several pro-carcinogenesis 
properties: it induces angiogenesis [77] and 
inhibits apoptosis, thus favoring neoplastic cell 
survival [78], tumor growth, and metastasis in an 
independent way. After complexing with u-PA/u-
PAR, PAI-1 is internalized. Its role thus changes 
from that of an ally to an enemy of the host 
(the u-PA/uPAR-PAI-1 paradox) [79], further 
indicating the capacity of cancer cells to enslave 
the host’s defensive systems.
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Finally, the role of D-dimer deserves attention. 
On the one hand, D-dimer is a recognized marker 
of fibrinolytic activity, and levels below a 
certain threshold are thus used to exclude venous 
thromboembolism. However, its interpretation 
is difficult, because D-dimer testing has high 
sensitivity but poor specificity [80], and high 
D-dimer levels do not necessarily indicate a 
thrombotic event. Indeed, many conditions result 

in abnormal D-dimer levels, including DIC, 
inflammation, pregnancy, aging, and cancer [81]. 
D-dimer levels have been correlated with cancer 
progression, and high levels were found in patients 
with metastatic cancer, and in patients with early 
relapse [82]. Finally, D-dimer comes from fibrin 
deposited in the vascular and alveolar structures 
in patients with COVID-19, further indicating its 
different possible sources [83] (Fig. 6).

Figure 5. Urokinase-type plasminogen activator (u-PA), released by cancer cells, activates the degradation of the 
extracellular matrix, so leading to cellular metastasis.
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Conclusions

The purpose of this review was to explore 
the pathophysiological mechanisms underlying 
the HS by considering the roles of platelets, 
blood coagulation, and fibrinolysis, focusing on 
their roles in inflammation, COVID-19 infection 
and cancer (Fig. 7). The complex nature of the 
pathophysiological mechanisms involved meant 
that this review was unable to consider all the 
processes in detail. Nevertheless, on the one 
hand, we considered the crucial role of the HS 
and its cooperation with the immune system 
in countering bacterial and viral invasion, and 
on the other hand, we assessed its harmful 
role in patients with cancer. In addition, 
we discussed the importance of excessive 
individual responses to sepsis or virus attacks, 
as in COVID-19. This review also presented the 
possible antineoplastic roles of anticoagulant 
and antifibrinolytic drugs. Further studies are 
needed to assess the abilities of these drugs to 
reverse or reduce the adverse impacts of the HS 
in patients with bacterial or viral infections and  
cancer. 

Figure 6. In SARS-CoV-2 infection, D-dimer comes from fibrin formed inside both the alveolar and capillary spaces.  
A: ACE receptor; C: cytokines; p: pneumocytes; Th: thrombin.

Figure 7. Reciprocal cross-talking among the hemostatic 
system (HS), cancer, sepsis and COVID-19.
DIC: disseminated intravascular coagulation; HS: hemostatic 
system; TEP: tumor-educated platelets.
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