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Abstract

This comprehensive review synthesizes the wealth of scientific literature 
pertaining to the application of Artificial Intelligence (AI) in the field of 
metabolomics. Over the past decade, AI has played an increasingly pivotal 
role in deciphering the complexities of metabolomic data, offering novel 
insights into the molecular underpinnings of biological systems. Through 
an extensive examination of relevant research papers, we provide a 
comprehensive overview of the diverse AI techniques and methodologies, 
from data preprocessing and feature selection to predictive modeling and 
pathway analysis, employed in metabolomics studies. The review dissects 
key trends and advancements in AI-driven metabolomics, shedding light on 
its pivotal role in biomarker discovery, disease diagnosis, and personalized 
medicine. In addition to highlighting the significant contributions of 
AI to metabolomics, emerging frontiers will be explored, such as the 
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incorporation of multi-omics data integration 
and the growing importance of explainable AI 
in biological research. Ultimately, this review 
underscores the transformative impact of AI on 
metabolomics, emphasizing its potential to reshape 
our understanding of metabolic pathways, disease 
mechanisms, and therapeutic interventions. The 
combination of AI and metabolomics stands 
as a powerful paradigm shift with far-reaching 
implications for advancing both fundamental 
scientific knowledge and practical applications 
across diverse domains.
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Introduction

Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) stands at the fore-
front of modern technological advancements, 
driven by the aspiration to replicate human-like 
intelligence within computer systems. At its core, 
Machine Learning (ML) serves as the pivotal 
toolset underpinning the quest to achieve this 
ambitious goal. ML encompasses a diverse array of 
algorithms designed to facilitate the emulation of 
cognitive processes [1]. These algorithms possess 
the remarkable ability to autonomously collect 
insights from data, recognize complex underlying 
patterns, and process unstructured data types that 
stand up to conventional statistical techniques. 
Such unstructured data, including free-text 
documents, images, videos, and audio recordings, 
has the potential to significantly enhance the 
quantity and possibly the quality of available 
information, thereby reinforcing predictive 

capabilities. Thanks to ML algorithms in the 
AI environment, systems have been developed 
that demonstrate exceptional performance for 
specific tasks [2]. ML, as a field, comprises two 
fundamental paradigms: supervised learning and 
unsupervised learning. In supervised learning, 
the algorithm operates with prior knowledge of 
the classes or labels during training, enabling it 
to learn and make predictions accordingly. In 
contrast, unsupervised learning, exemplified by 
techniques like hierarchical clustering, endeavors 
to unveil the inherent structure within datasets, 
often leading to the discovery of latent classes 
or groupings [3]. Various ML techniques exist to 
facilitate the mapping of objects to classes and the 
creation of predictive models. Notable methodologies 
include Logistic Regression (LR), Random Forest 
(RF), the naive Bayes classifier, Support Vector 
Machine (SVM), and Artificial Neural Networks 
(ANN), including the growing rapidly domain of 
Deep Neural Networks (DNN) [4].

Metabolomics

Metabolism, the cornerstone of all biological 
systems, serves as the vital process responsible 
for providing essential energy, constructing the 
requisite building blocks for cellular growth and 
adaptation, and functioning as a central regulatory 
hub governing a myriad of biological functions. 
In recent years, the field of metabolomics 
has garnered increasing recognition for its 
unparalleled capacity to offer immediate and 
comprehensive insights into physiological 
processes [5]. Metabolites, the end products 
of metabolism, are widely acknowledged as 
providing a uniquely representative description 
of a phenotype, as they closely mirror the 
dynamic reactions unfolding within a biological 
system [2]. The field of metabolomics offers a 
wealth of data that has the potential to bring about 
transformative advancements in various domains, 
including clinical, environmental, and biological 
sciences. This field plays an instrumental role 
in diagnosing diseases, conducting rigorous 
toxicological investigations, and monitoring the 
progress or enhancement of treatments [5]. Due 
to its ability to decipher the intricate molecular 
signatures that underlie a multitude of biological 
states, metabolomics emerges as a potent 
instrument ready to expose the inner mechanisms 
of living systems and catalyze innovation across 
a broad spectrum of scientific research [6].
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Machine Learning in metabolomics

In recent years, ML has risen to the forefront 
of metabolomics research, revolutionizing the way 
we analyze and interpret metabolomic data. The 
synergy between metabolomics and ML holds great 
promise [7]. ML algorithms can discern subtle 
variations in metabolite profiles associated with 
specific biological conditions, unravel complex 
metabolic networks, and aid in biomarker discovery. 
Moreover, ML-driven metabolomics enables the 
development of predictive models for disease 
diagnosis, treatment optimization, and personalized 
medicine [8]. Many applications of ML in the 
metabolomics field have predominantly centered 
on a critical step in the untargeted analysis pipeline: 
feature selection. In this phase, ML algorithms play 
a crucial role in distilling vast datasets containing 
thousands of features down to a more manageable 
set, typically in the order of tens. These selected 
features hold predictive value for various health 
outcomes or phenotypes. It is worth noting that 
current ML applications in metabolomics are 
primarily constrained to individual ‘omics’ datasets. 
However, recent advancements have extended ML’s 
capabilities to integrate data across different ‘omics’ 
levels, adopting a systems biology approach. This 
progressive development promises to unearth 
additional and combined biomarkers, enhancing 
both specificity and ability to unravel the complex 
web of factors associated with disease initiation and  
progression [9].

 
Materials and methods

The statistical processing in this study was 
conducted using the R software version 4.2.2 and 
R package known as Biblioshiny (Bibliometrix, 
K-Synth S.r.l., Naples, Italy). The entire process 
was organized into two distinct phases: firstly, 
the collection of data, and secondly, the subse-
quent bibliometric analysis. Notably, Biblioshiny 
stands out as a specialized software dedicated 
to bibliometric analysis. Designed to facilitate 

user-friendly and interactive exploration of 
bibliographic data, Biblioshiny offers a com-
prehensive suite of functions tailored for this 
purpose. The tool is specifically crafted for the 
extraction and visualization of bibliometric data 
derived from scholarly databases like Web of 
Science™ (Clarivate™, St. Helier, Jersey) [10].

Implemented in the widely utilized R pro-
gramming language, Biblioshiny provides 
researchers with a robust platform to filter 
and extract relevant articles from expansive 
bibliographic databases based on specified 
criteria. These criteria may include language, 
publication period, and keyword inclusion. This 
functionality allows researchers to streamline 
their dataset, focusing on articles most pertinent 
to their research interests [11].

One standout feature of Biblioshiny is its 
integration of interactive visualization tools. These 
tools empower users to generate informative graphs, 
charts, and network analyses. These visualizations 
play a pivotal role in enabling researchers to 
gain deeper insights into the bibliographic data 
[12]. They aid in identifying trends, patterns, and 
relationships among ar ticles, authors, or keywords. 
Such insights hold significant value for shaping 
research strate gies, pinpointing knowledge gaps, 
and situating findings within the broader scientific 
landscape [13, 14].

In our study, Biblioshiny played a central role 
in the analysis of extracted data, enabling us to 
report on key information such as publication 
volume, participating institutions and countries, 
prominent keywords, emerging trends, and in-
fluential sources. Additionally, a co-occurrence 
network of the most frequently encountered terms 
was generated, providing further insights into 
the interconnectedness of concepts within the 
analyzed literature.

A systematic literature search (Fig. 1) was 
performed within the Web of Science™ Core Col-
lection, an extensive repository encompassing a vast 
array of records and documents. The ultimate retrieval 
strategies employed in this search were: subject 

Figure 1. Data collection flow diagram.
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words: (metabolomics) AND (Artificial Intelligence 
OR Machine Learning OR Deep Learning OR 
Neural Networks); literature type: article; lan-
guage: English; timespan: 2017-2022. Records and 
references of 824 studies were downloaded. The 
results were subsequently imported into bibliometric 
analysis tools for analysis. The final selection of 
88 articles that underwent extensive analysis was 
primarily driven by the inclusion of experimental 
studies. Experimental works were prioritized for 
their ability to provide robust empirical evidence 
relevant to the study objectives.

Results

The main information of the papers are shown 
in Tab. 1. 

Annual analysis

Between 2017 and 2022, a grand total of 
824 articles exploring the application of AI in 
metabolomics were disseminated in the Web of 
Science™ database, as illustrated in Fig. 2. 

Notably, the corpus of publications related 
to the integration of AI within the field of 
metabolomics has exhibited a remarkable and 
consistent upward trajectory since 2017. 

The annual distribution of these publications 
is summarized in Tab. 2, providing a clear view 
of the growing interest and engagement in this 
dynamic intersection of scientific domains.

Description Result

Timespan 2017-2022

Sources (journals, books, etc.) 386

Documents 824

Annual growth rate % 48.89

Keywords Plus® (ID) a 2,381

Author Keywords (DE) a 1,950

Authors 6,232

Authors of single-authored docs 11

Single-authored docs 12

Co-authors per doc 9.08

International co-authorships % 34.95
a In the Web of Science™ Core Collection, Keywords Plus® (or 
“identifiers” [ID]) are keywords generated algorithmically from 
words or phrases that frequently appear in the titles of an article’s 
references but do not appear in the title of the article itself, 
while Author Keywords (or “descriptors” [DE]) are the keywords 
provided by the authors.

Table 1. Main information regarding the articles.

Table 2. Number of publications per year.

Year Articles

2017 41

2018 47

2019 85

2020 128

2021 223

2022 300

Figure 2. Number of publications per year.
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Countries/regions analysis

In the period spanning from 2017 to 2022, 
the United States emerged as the leading 
contributor, publishing the highest volume of 
articles pertaining to the application of AI in 
metabolomics. Following the United States, other 
prominent contributors included respectively 
China, Germany, the United Kingdom, Japan, 
Canada, Italy, France, Spain, and the Nether-
lands. The contributions of these countries are 
visually depicted in Fig. 3, generated through 

the utilization of the Biblioshiny package in 
the R programming environment, offering a 
comprehensive representation of their respective 
research output in this specialized domain.

As depicted in Fig. 4, the publication output 
in the United States, China, Germany, the United 
Kingdom and Japan experienced a substantial 
increase from 2017 to 2022, reflecting a consistent 
and positive trend across all nations. This demon-
strate the growing significance of utilizing AI 
methods in the field of metabolomics research 
worldwide.

Figure 3. Countries’ scientific production. 
Darker blue represents greater productivity. Grey indicates countries not producing articles related to the application of Artificial Intelligence 
(AI) in metabolomics.

Figure 4. The top 5 countries’ scientific production over time.
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Institutions analysis

Over the span of 2017 to 2022, a total of 1,654 
institutions have actively contributed to research 
in the realm of AI applied to metabolomics. 
Remarkably, the top 10 institutions collectively 
authored 521 articles, representing a substantial 
63.2% share of the total publication output. 
Notably, the University of California System 
emerged as the foremost contributor to this 
field, with 94 publications attributed to their 
research efforts. Following closely, the Uni-
versity of California San Diego accounted for 
75 publications, while Harvard University 
and the Udice-French Research Universities 
made significant contributions with 73 and 66 
publications, respectively, as detailed in Tab. 3 
and Fig. 5.

Table 3. The top 10 contributing institutions.
Affiliation Articles
University of California System 94
University of California San Diego 75
Harvard University 73
Udice-French Research Universities 66
Helmholtz Association 41
University of Michigan 37
Chinese Academy of Sciences 36
Institut National de la Santé et de la 
Recherche Médicale (Inserm) 36

Harvard Medical School 32
Université Paris Cité 31

Figure 5. The top 10 contributing institutions.

Figure 6. The top 5 contributing institutions’ scientific production over time.

As evident in Fig. 6, beginning in 2018, all 
institutions within the top 5 have undergone a 
notable and continuous increase in their research 
output, indicative of a persistent and favorable trend.
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Journals analysis

Since 2017, a total of 386 journals have contributed 
to the dissemination of articles exploring the ap-
plication of AI in metabolomics. 

Our analysis has identified the top 10 contributing 
journals, as detailed in Tab. 4 and Fig. 7. Collectively, 
these select journals have published 220 articles, 
constituting 26.7% of the entire body of publications 
within the domain of AI applied to metabolomics. 
Consequently, delving into the articles featured in 
these prominent journals provides a comprehensive 
overview of the prevailing research frontiers in this 
evolving field. 

Notably, journals such as Metabolites, Analytical 
Chemistry, Scientific Reports, and Metabolomics not 
only boast a significant volume of published papers but 
also carry substantial impact factors within this specific 
realm of research (Tab. 5, Fig. 8). These journals 

Table 5. The top 10 H-index journals.
Journals H-index G-index M-index TC NP PY_start
Analytical Chemistry 19 35 2.71428571428571 1,285 42 2017
Metabolomics 13 18 1.85714285714286 371 26 2017
Scientific Reports 13 21 1.85714285714286 498 34 2017
Metabolites 11 15 1.57142857142857 324 56 2017
Journal of Proteome Research 9 12 1.28571428571429 303 12 2017
Analytica Chimica Acta 7 8 1.16666666666667 189 8 2018
Nature Communications 7 8 1.75 200 8 2020
Food Chemistry 6 7 0.857142857142857 199 7 2017
Proceedings of the National Academy of 
Sciences of the United States of America 6 7 1.2 196 7 2019

BMC Bioinformatics 5 9 0.714285714285714 99 12 2017
H-index: it is an author-level metric that measures both the productivity and citation impact of the publications; G-index: it is a variant of 
the H-index that, in its calculation, gives credit for the most highly cited papers in a data set; M-index: it is another variant of the H-index 
that displays H-index per year since first publication; TC: total citations; NP: number of publications; PY_start: start of publishing (year).

Table 4. The top 10 contributing journals.
Journals Articles
Metabolites 56
Analytical Chemistry 42
Scientific Reports 34
Metabolomics 26
BMC Bioinformatics 12
Journal of Proteome Research 12
PLoS One 11
International Journal of Molecular Sciences 10
Cancers 9
Analytica Chimica Acta 8

Figure 7. The top 10 contributing journals.

emerge as pivotal sources of knowledge in the realm 
of AI applied to metabolomics, underscoring their 
importance in shaping the discourse and advancing 
the field.

The analysis of the source co-citation network 
(Fig. 9) revealed the presence of 4 distinct clusters. 
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Generally, the journals positioned at the outermost 
edges of each cluster exhibit weaker relationships 
with journals from other clusters. The size of the 
nodes within the network denotes the strength of 
these connections. Notably, clusters 2 and 4 emerge 
as pivotal components within the network, displaying 
robust connections not only with each other but also 
serving as connectors between the remaining clusters 
(1 and 3). This interconnectedness between clusters 

2 and 4 is further underscored by their advantageous 
positions, both in terms of betweenness centrality 
and the number of publications they represent. 
Remarkably, the analysis highlights that more 
than half of the top 10 productive journals are 
situated within clusters 2 and 4, reinforcing their 
significance within the co-citation network and 
their central role in shaping the scholarly discourse 
in this domain.

Figure 8. The top 10 H-index journals.

Figure 9. Co-citation network of sources. 
Green cluster: cluster 1; purple cluster: cluster 2; red cluster: cluster 3; blue cluster: cluster 4.
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Authors analysis

Author-level analysis shows several key 
findings. Firstly, the most prominent authors are 
identified alongside essential bibliometric indi-
cators, as outlined in Tab. 6 and Tab. 7. Notably, 
Kikuchi J stands out as the author with the highest 
article count and concurrently boasts the highest 
H-index and G-index, indicative of substantial 
scholarly impact. Secondly, the authors’ pro-
ductivity trends over time will be investigated, 
shedding light on the temporal distribution and 
output characteristics of their work. As illus-
trated in Fig. 10, a group of authors, including 
Kikuchi J, Date Y, Troisi J, and Wang X, has 
demonstrated consistent and prolific productivity, 
maintaining an annual publication record over 
the past few years and garnering sustained high 
citation counts (with a temporary interruption in 
2019). Conversely, authors like Wang J, Wang 
Y, Adamski J, and Graham SF entered the field 
of applying AI in metabolomics more recently, 
starting in 2019. Despite their relatively shorter 
tenure, they have exhibited impressive research 
output and garnered substantial total citations 
over the last 4 years. Additionally, we note that 
authors Chen ZJ and Li Y made their entry into 
the realm of applying AI in metabolomics in 
2020. Despite their relatively brief involvement, 

Table 6. The top 10 contributing authors.

Authors Articles Articles fractionalized a

Kikuchi J 10 2.57738095238095

Chen ZJ 9 1.20324675324675

Date Y 9 2.32738095238095

Li Y 9 0.780696058327637

Troisi J 9 0.792735042735043

Wang J 9 0.571570972886762

Wang X 9 0.863475310379335

Wang Y 9 0.771785567373803

Adamski J 8 0.495960170098101

Graham SF 8 0.792893217893218
a In Biblioshiny, “articles fractionalized” indicate an individual author’s 
contribution to a published set of papers (uniform contribution of all 
co-authors at each document is hypothesized).

Table 7. The top 10 H-index authors.

Authors H-index G-index M-index TC NP PY_start

Kikuchi J 7 10 1 178 10 2017

Scala G 7 8 1 142 8 2017

Troisi J 7 9 1 164 9 2017

Adamski J 6 8 1.2 114 8 2019

Date Y 6 9 0.857142857142857 157 9 2017

Graham SF 6 8 1.2 129 8 2019

Guida M 6 6 0.857142857142857 132 6 2017

Yilmaz A 6 8 1.2 129 8 2019

Bahado-Singh RO 5 5 1 97 5 2019

Chen ZJ 5 7 1.25 57 9 2020

H-index: it is an author-level metric that measures both the productivity and citation impact of the publications; G-index: it is a variant of 
the H-index that, in its calculation, gives credit for the most highly cited papers in a data set; M-index: it is another variant of the H-index 
that displays H-index per year since first publication; TC: total citations; NP: number of publications; PY_start: start of publishing (year).

Chen ZJ notably secured the second position 
among the most influential authors in this field, 
owing to a substantial number of publications 
and a remarkable annual citation count. These 
findings collectively underscore the dynamic 
and evolving landscape of author contributions 
in the intersection of AI and metabolomics. By 
analyzing the collaboration network, a total of 
11 clusters were generated and 5 of them were 
interconnected with each other (Fig. 11).
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Figure 11. Author collaboration network.

Figure 10. The top 10 contributing authors’ production over time.
TC: total citations.

Keywords analysis

In the course of investigation, the capabilities of 
Biblioshiny to delineate the foremost 10 keywords 
associated with the application of AI in metabolomics 
spanning the years 2017 to 2022 were utilized. The 
most frequent words are metabolomics, identification, 
biomarkers, mass-spectrometry, risk, diagnosis and 
so on (Tab. 8, Fig. 12). The prevalence of specific 
keywords often serves as a barometer for emerging 
trends or prevalent themes within a particular field of 
study. 

The co-occurrence network visualisation was 
made to show the correlation between the keywords. 

Table 8. The top 10 keywords.

Words Occurrences

Metabolomics 143

Identification 83

Biomarkers 69

Mass-spectrometry 65

Risk 59

Diagnosis 48

Expression 44

Cancer 43

Metabolism 41

Prediction 40
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Figure 12. The top 10 keywords.

In the co-word analysis (Fig. 13), various aspects 
are depicted through visual indications: the size of 
the items corresponds to the frequency of the term, 
different colors distinguish different clusters, and 
the length of connections between items signifies 
the strength of their relationships. This analysis 
reveals the presence of 2 distinct clusters, each 
indicative of specific areas of research focus. Cluster 
1 primarily centers around scholarly investigations 
related to biomarkers, indicating a vibrant research 
domain with a substantial volume of publications 
from 2017 to 2022. The prominence of this cluster 
underscores the significance of biomarker research 

within the academic community. In contrast, cluster 2 
appears more comprehensive, as it contains centrally 
positioned keywords, such as “metabolomics” and 
“identification.” This cluster suggests a multifaceted 
research landscape, signifying the interconnectedness 
of topics and a broader scope of inquiry. Notably, this 
co-word analysis, derived from keywords, provides 
valuable insights into the prevailing research interests 
and emphases within academia, elucidating the di-
verse areas of scholarly exploration and collaboration.

An examination of research trends, as illustrated 
in Fig. 14, reveals a notable evolution in the focus 
of studies over the years, particularly since 2018. In 

Figure 13. Keywords co-occurrences network.
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Figure 14. Trend topics over time.

Table 9. Extensive analysis of 88 articles (continues on the next page).
Study Pathology Model Main outcome

Oktay et al., 2020 [15] Breast cancer RF, LR Evaluation of blood 
biomarkers

Dong et al., 2020 [16] Obesity/food addiction RF Brain-gut-microbiome  
profile

Chen et al., 2021 [17] Tumor brain metastases ANN Identification of biomarkers

Miller et al., 2022 [18] Low-level or sub-concussive blast 
overpressure RF, t-SNE Identification of biomarkers

a comparative context, recent years have witnessed a 
shift towards hot topics such as quantification, cells, 
growth, metabolomics, identification, and biomarkers, 
indicating the dynamic nature of research interests in 
this field.

Extensive analysis of 88 articles

In this study, an extensive analysis of 88 articles 
sourced from the Web of Science™ database, 
focusing on the application of AI techniques in the 
field of metabolomics, was conducted. 

After reviewing the initial pool of 824 articles, 
the selection process for the 88 articles was based on 
the inclusion of experimental studies. A preference 
was given to experimental works for their rigorous 
methodology and direct investigation of the research 
questions at hand. 

The findings of this comprehensive review are 
summarized in Tab. 9. 

Notably, the primary objective of AI utilization 
in these studies was the identification of biomarkers, 

representing the most prevalent outcome across the 
analyzed literature.

Furthermore, it is noteworthy that AI has been 
deployed across a diverse spectrum of diseases for the 
analysis of metabolomic profiles. Among the various 
cancers studied, lung and breast cancer emerged 
as the most frequently investigated types (Fig. 15). 
This highlights the particular relevance of AI-driven 
metabolomics research in the context of malignancies.

Beyond cancer, other prevalent diseases subject 
to metabolomic profiling included neurodegenerative 
diseases such as Alzheimer’s and Parkinson’s disease, 
and the acute respiratory disease COVID-19 (Fig. 15). 
These conditions garnered significant attention within 
the research community, reflecting the pressing need 
for effective disease characterization and biomarker 
discovery in these domains.

In terms of the ML techniques employed, the 
analysis revealed that RF, SVM and LR were the 
most frequently utilized methods (Fig. 16). These 
algorithms were favored for their ability to effectively 
handle and interpret the complex data inherent to 
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Table 9. Extensive analysis of 88 articles (continues from the previous page and on the next page).

Study Pathology Model Main outcome

Massetti et al., 2022 [19] Alzheimer’s disease spectrum RF Prediction of the clinical 
course

Muller et al., 2021 [20]

Inflammatory bowel disease, gastric 
cancer, irritable bowel syndrome, 

colorectal adenomas or  
cancer

RF, REM
Prediction of metabolite 
levels on microbiome 

composition

Stamate et al., 2019 [21] Alzheimer’s disease DL, XGBoost, RF Prediction of the disease

Pannkuk et al., 2018 [22] Hematopoietic acute radiation 
syndrome RF Identification of biomarkers

Troisi et al., 2017 [23] Fetal aneuploidies
PLS-DA, LDA, NB, 

DT, RF, k-NN, ANN, 
SVM

Evaluation of the diagnostic 
performance

Troisi et al., 2018 [24] Congenital anomalies of the central 
nervous system

PLS-DA, LDA, NB, 
DT, RF, k-NN, ANN, 

SVM, LR

Building a metabolomic 
fingerprint

Troisi et al., 2022 [25] Colorectal cancer
NB, GLM, LR, DL, 

DT, RF, GBT, SVM, 
PLS-DA

Evaluation of the metabolic 
alterations associated with 

the disease

Liang et al., 2022 [26] Lung cancer PLS-DA, OPLS-DA Identification of biomarkers

Chung and Kang, 2019 [27] Breast cancer, ovarian cancer
Neural network-
based method 

ATHENA
Disease classification

Wang et al., 2018 [28] Sepsis

KELM, FOA, RF, 
PSO-based KELM, 
GA-based KELM, 

FOA-based KELM, 
ANN, SVM

Prediction of the disease, 
identification of the most 

important biomarkers

Neumann et al., 2021 [29] Urachal cancer,  
urachal adenocarcinomas k-NN, SVM, RF Detection of biomarkers

Gupta et al., 2022 [30] Endometrial, breast, cervical, 
ovarian cancer K-NN, LR Detection of disease

Wang et al., 2022 [31] Type 2 diabetes RF, XGBoost, OPLS-
DA, SVM, DNN

Prediction of clinical 
outcomes

Zacharias et al., 2019 [32] Chronic kidney disease PH, LASSO Cox PH
Prediction of the 

requirement of dialysis or 
renal transplantation

Blasco et al., 2018 [33] Amyotrophic lateral sclerosis OPLS-DA, RF, SVM Detection of biomarkers

Bocca et al., 2018 [34] Dominant optic atrophy OPLS-DA, Biosigner, 
RF, SVM Detection of biomarkers

Olin et al., 2020 [35] Fibromuscular dysplasia k-NN, RF Identification of biomarkers

Bao et al., 2022 [36] COVID-19 RF, CoxBoost Prediction, identification of 
biomarkers

Troisi et al., 2021 [37] Bladder cancer
PLS-DA, NB, DT, RF, 

k- NN, ANN, SVM, 
LR, DL

Creation of a metabolomics-
based profile of the disease

Rawshani et al., 2020 [38] Type 2 diabetes RF, Gradient 
boosting

Identification of predictors of 
cardiometabolic risk profle

Anwar et al., 2018 [39] Autism spectrum disorder RF, LR, Ensemble 
classifier, SVM Biomarker selection

Tang et al., 2019 [40] Lymphangioleiomyomatosis EBAM, SAM Identification of biomarkers

Chang et al., 2021 [41] Amyotrophic lateral sclerosis OPLS-DA, SVM Identification of biomarkers

Sapkota et al., 2018 [42] Alzheimer’s disease OPLS-DA, SVM, RF Identification of biomarkers

Vicente-Dueñas et al., 2020 [43] Leukemia RF Identification of biomarkers

Siegel et al., 2017 [44] Type 1 diabetes Bootstrap, LDA Detection of biomarkers
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Study Pathology Model Main outcome

Huang et al., 2021 [45] Inflammatory bowel disease SVM, AdaBoost, RF, 
DNN

Multi-classification of 
inflammatory bowel disease 

and its subtypes

Irajizad et al., 2022 [46] Triple-negative breast cancer
DL, RF, Ensemble 
learning, Gradient 

boosting
Identification of biomarkers

Bahado-Singh et al., 2022 [47] Alzheimer’s disease k-NN, SVM, GLM, 
PAM, RF, LDA, DL Identification of biomarkers

Proitsi et al., 2017 [48] Alzheimer’s disease RF Identification of biomarkers

Borkowski et al., 2021 [49] Alzheimer’s disease PLS-DA, LR Identification of biomarkers

Kehoe et al., 2022 [50] Lyme disease SSVM, k-NN
Selection of metabolic 
biomarkers, building a 

metabolite-based diagnostic

Varma et al., 2018 [51] Alzheimer’s disease SVM, RF Identification of biomarkers

Khan et al., 2022 [52] Insulin resistance RF, OPLS Identification of biomarkers

Miller-Atkins et al., 2020 [53] Hepatocellular carcinoma LR, RF Predictive model

Gbaoui et al., 2022 [54] Major depressive disorder RF, LR Identification of biomarkers

Kaur et al., 2022 [55] Breast cancer DNN, GBM, DRF
Prediction of the 

occurrence, reoccurrence, 
and survival

Zhou et al., 2022 [56] Postherpetic neuralgia PLS-DA, OPLS-DA, 
RF, SMV, LR Identification of biomarkers

Tiedt et al., 2020 [57] Ischemic stroke, stroke mimics RF, LDA, LR, k-NN, 
NB, SVM

Discrimination of patients 
with ischemic stroke from 

stroke mimics

Zhou et al., 2021 [58] Rheumatoid arthritis PLS-DA, OPLS-DA, 
RF, BLR, CP-ANN Identification of biomarkers

Li et al., 2021 [59] Malignant mesothelioma RF, OPLS-DA Identification of biomarkers

Lai et al., 2022 [60] Lung cancer

PLS-DA, RF, 
XGBoost, LightGBM, 

k-NN, SVM, LR, 
ExtraTree

Identification of biomarkers

Hu et al., 2022 [61] Tuberculosis
OPLS-DA, Metabolite 
enriched pathways, 

RF, SVM, MLP
Identification of biomarkers

Yang et al., 2022 [62] Retinopathy of prematurity RF, OPLS-DA Identification of biomarkers

Hao et al., 2018 [63] Alzheimer’s disease SVM Identification of biomarkers

Koureas et al., 2021 [64] Lung cancer RF Identification of biomarkers

Gal et al., 2020 [65] Breast cancer
k-means, SIMLR, k- 
sparse and Spectral 

clustering
Classification of the disease

Xiao et al., 2022 [66] Triple-negative breast cancer LASSO, SVM Identification of biomarkers

Delafiori et al., 2021 [67] COVID-19 Tree boosting (ADA), 
RF, XRF, PLS, SVM Diagnosis

Villagrana-Bañuelos et al., 2022 [68] COVID-19 GA, RF Prediction outcomes

Liu et al., 2022 [69] Acute myocardial infarction PRA, RF, RFE, GA Identification of biomarkers

Alakwaa et al., 2018 [70] Breast cancer
DL, RF, SVM 

RPART, LDA, PAM, 
GBM

Identification of biomarkers

Zhang et al., 2022 [71] Stroke XGBoost, OPLS-DA Detection of the disease

Johno et al., 2018 [72] Atherosclerosis PLS, LR Identification of biomarkers

Wang et al., 2019 [73] Osteoporosis PCA, PLS-DA Identification of biomarkers

Table 9. Extensive analysis of 88 articles (continues from the previous page and on the next page).
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Study Pathology Model Main outcome

Miller et al., 2021 [74] Lung cancer
PCA, PLS-DA, k-NN, 

Bayesian principal 
component analysis

Identification of biomarkers

Trezzi et al., 2017 [75] Parkinson’s disease LR Identification of biomarkers

Xie et al., 2021 [76] Lung cancer K-NN, NB, AdaBoost, 
SVM, RF, ANN Identification of biomarkers

Peddinti et al., 2017 [77] Type 2 diabetes LR, RLS Identification of biomarkers

Miller et al., 2021 [78] Lung cancer PLS-DA, SVM, ANN, 
RF Identification of biomarkers

Akyol et al., 2020 [79] Dementia DL, RF, SVM, LDA, 
PAM, GLM Identification of biomarkers

Sinha et al., 2017 [80] Asthma RF, k-means Identification of biomarkers

Beccaria et al., 2018 [81] Tuberculosis SVM, PLS-DA, RF Identification of biomarkers

Iwano et al., 2021 [82] Pancreatic cancer PLSR, SVM Identification of biomarkers

Abdullah at al. 2022 [83] Alzheimer’s disease LR Identification of biomarkers

Lin et al., 2022 [84] Carotid artery stenosis OPLS-DA, DT, RF Identification of biomarkers

Eng et al., 2021 [85] Cystic fibrosis RF Identification of biomarkers

Webb-Robertson et al., 2022 [86] Type 1 diabetes NB Identification of biomarkers

Glaab et al., 2019 [87] Parkinson’s disease SSVM, RF Diagnosis

An et al., 2022 [88] Breast cancer LASSO, RF, SVM Identification of biomarkers

Gilard et al., 2021 [89] Glioblastoma RF Mechanisms of disease

Celaya-Padilla et al., 2021 [90] COVID-19 SSVM, LR Identification of biomarkers

Buszewska-Forajta et al., 2021 [91] Prostate cancer ANN, RF Identification of biomarkers

Wang et al., 2022 [92] Lung cancer SVM, RF, AdaBoost Identification of biomarkers

Miller et al., 2022 [93] Lung cancer
RF, ANN, MLP, NSC, 

NB, BGLM, k-NN, 
SVM, SPLS, LR, RF

Identification of biomarkers

Gao et al., 2022 [94] Alcoholic hepatitis RF, LR, SVM Prediction of mortality

Kosyakovsky et al., 2022 [95] Sepsis
RF, SVM, k-NN, 

NSC, LASSO, PLS-
DA, LR

Prediction of mortality

Yilmaz et al., 2020 [96] Parkinson’s disease LR, SVM Metabolic profiling

Liu et al., 2022 [97] COVID-19 RF, LR Identification of biomarkers

Rahnavard et al., 2022 [98] COVID-19 DNN, k-NN, RF, LR Disease severity prediction

Njoku et al., 2021 [99] Endometrial cancer RF Identification of biomarkers

Cheng et al., 2019 [100] Endometrial cancer SVM, PLS-DA, RF, 
LR Identification of biomarkers

Qureshi et al., 2022 [101] Autism spectrum disorder FDA, SVM Identification of biomarkers

Dimitri et al., 2022 [102] Parkinson’s disease SVM, ElasticNet, 
PLS Identification of biomarkers

ANN: Artificial Neural Networks; BGLM: Boosted General Linear Model; BLR: Binary Logistic Regression; CP-ANN: Counter Propagation 
Artificial Neural Network; DL: Deep Learning; DNN: Deep Neural Network; DRF: Distributed Random Forest; DT: Decision Tree; EBAM: 
Empirical Bayes Analysis of Microarrays; ExtraTree: Extremely Randomized Trees; FDA: Fisher Discriminant Analysis; FLM: Fast Large 
Margin; FOA: Fruit Fly Optimization Algorithm; GA: Genetic Algorithms; GBM: Gradient Boosting Machine; GBT: Gradient Boosted Trees; 
GLM: Generalized Linear Model; k-NN: k-Nearest Neighbor; KELM: Kernel Extreme Learning Machine; LASSO: Least Absolute Shrinkage 
and Selection Operator; LDA: Linear Discriminant Analysis; LightGBM: Light Gradient Boosting Machine; LR: Logistic Regression; MLP: 
Multilayer Perceptron Neural Network; NB: Naïve Bayes; NSC: Nearest Shrunken Centroids; OPLS-DA: Orthogonal Partial Least Squares 
Discriminant Analysis; PAM: Prediction Analysis for Microarrays; PCA: Principal Component Analysis; PH: Cox Proportional Hazards; 
PLS: Partial Least Squares; PLS-DA: Partial Least Square Discriminant Analysis; PLSR: Partial Least Square Regression; PRA: Poisson 
Regression Analysis; PSO: Particle Swarm Optimization; REM: Random-Effects Models; RF: Random Forest; RFE: Recursive Feature 
Elimination; RLS: Regularised Least-Squares; RPART: Recursive Partitioning And Regression Trees; SAM: Significance Analysis of 
Microarrays; SIMLR: Single-cell Interpretation via Multi-kernel LeaRning; SPLS: Sparse Partial Least Squares; SSVM: Sparse Support 
Vector Machines; SVM: Support Vector Machine; t-SNE: t-distributed Stochastic Nearest Neighbor Embedding; XGBoost: Extreme 
Gradient Boosting; XRF: Extreme Random Forest.

Table 9. Extensive analysis of 88 articles (continues from the previous page).



16/21 Kopeć • Cannas • Piras • Spada • Noto • Atzori • Fanos

Journal of Pediatric and Neonatal Individualized Medicine • vol. 13 • n. 1 • 2024www.jpnim.com Open Access

Figure 15. Pathological distribution of studies.

Figure 16. Distribution of Machine Learning (ML) methods.
ANN: Artificial Neural Networks; DL: Deep Learning; k-NN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; OPLS-DA: 
Orthogonal Partial Least Squares Discriminant Analysis; PLS-DA: Partial Least Square Discriminant Analysis; RF: Random Forest; 
SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.
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metabolomics studies. Such ML techniques have 
demonstrated their efficacy in achieving accurate 
biomarker identification and disease profiling, 
making them prominent choices in the realm of AI-
driven metabolomics research.

Conclusions

This bibliometric investigation has explored the 
global landscape of scientific production concerning 
the application of AI in metabolomics from 2017 to 
2022. The analysis has uncovered a visible upswing 
in the number of information sources, authors, and 
scholarly documents, underscoring the interest and 
engagement in this dynamic domain. Furthermore, 
the collaborative endeavors among authors have 
witnessed a notable increase, manifesting in a 
substantial international collaboration rate of 34.95%.

Prominent journals, including Metabolites, An
alytical Chemistry, Scientific Reports, and Me
tabolomics, have emerged as pivotal platforms for 
disseminating articles related to AI in metabolomics. 
Noteworthy authors such as Kikuchi J, Chen ZJ, 
and Date Y have made significant contributions to 
advancing this field’s discourse and knowledge base.

In summary, our comprehensive analysis in the 
field of metabolomics research reveals several key 
insights. AI has emerged as a powerful tool for 
biomarker identification and disease profiling, with 
the majority of studies focusing on these objectives. 
ML techniques, including RF, LR, and SVM, have 
been extensively employed, underscoring their 
effectiveness in handling the complex data inherent 
to metabolomics.

Furthermore, our findings highlight specific areas 
of interest within metabolomics research. Lung 
and breast cancer stand out as prominent subjects 
of investigation, emphasizing the relevance of AI-
driven metabolomics in oncology. Additionally, 
Alzheimer’s and Parkinson‘s disease and COVID-19 
have garnered substantial attention, reflecting the 
urgency in characterizing these conditions and 
identifying potential biomarkers.

The distribution of ML methods in metabolomics 
showcases the diversity of approaches used to 
extract meaningful insights from metabolomic 
data. This diversity underscores the adaptability of 
AI techniques to the unique challenges posed by 
different pathologies and research contexts.

Overall, our study underscores the growing 
significance of AI in metabolomics research and 
its potential to revolutionize disease diagnosis 
and biomarker discovery. As the field continues 

to evolve, researchers should remain attentive to 
emerging trends and explore innovative applications 
of AI to further advance our understanding of 
metabolic pathways and disease mechanisms.

These findings illuminate the international di-
mensions and the evolving research themes within 
the realm of AI in metabolomics. Prospective 
research in this domain could delve into emerging 
areas such as biomarker discovery, personalized 
medicine, elucidating disease mechanisms, in-
novative pharmaceuticals, and novel therapeutic 
interventions. Such exploration promises to further 
enrich our understanding and application of AI in 
the context of metabolomics.
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