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Abstract

Histo-blood group antigens are inherited polymorphic glycans 
expressed on mucosal epithelial cell surfaces and shed in secretions. They 
act as receptors for gastrointestinal pathogens. Those expressing these 
antigens are categorized as secretors and have an increased susceptibility 
to gastrointestinal infections, particularly from some norovirus and 
rotavirus genotypes. However, high-level evidence of association between 
secretor status and susceptibility is lacking for many other gastrointestinal 
pathogens. We compared differences in detection rates for 8 viruses, 5 
bacteria, and 4 protozoa in children under 2 years of age enrolled in the 
Australian Observational Research in Childhood Infectious Diseases 
birth cohort study. Their secretor status was determined by phenotyping 
(ABO, Lewis, UEA-I) and genotyping test results. Data from polymerase 
chain reaction assay testing of weekly stool samples collected from birth 
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as well as daily symptom and illness diaries were 
analyzed. Incidence rates were calculated by 
secretor status and compared using incidence rate 
ratios for each pathogen. Additional comparisons 
included symptomatic/asymptomatic detections, 
illness severity, and healthcare utilization by 
secretor status. Eighty-four children (77% 
secretors) participated for an exposure period of 
157 child-years. The incidence rates of norovirus 
GI, GII, wild-type rotavirus, and Campylobacter 
detections were more than 50% higher in 
secretors than non-secretors, but lower for 
Blastocystis. For these pathogens, secretor status 
was not associated with symptomatic illness, 
severity, or healthcare use. Our results confirmed 
the previously known higher susceptibility to 
norovirus GII infections in secretors but displayed 
variations in susceptibility to other pathogens. 
This study strengthens the evidence for norovirus 
susceptibility in Australian children.
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Introduction

Diarrheal disease is a leading cause of 
morbidity and mortality. In 2016, there were 
an estimated 1.7 million deaths and 4.5 billion 
acute diarrheal episodes globally [1]. That year 
diarrheal disease was the eighth leading cause of 
death across all age groups and the fifth in children 
under 5 years of age. Rotavirus, followed by 
Shigella, were the major etiologic pathogens [1]. 
In children under 5 years of age rotavirus caused 
an estimated 128,500 deaths and more than 258 
million episodes of diarrhea [2]. Nevertheless, 

rotavirus vaccines, improvements in sanitation, 
food/water quality, and nutrition, as well as 
increased availability of oral rehydration solutions 
have all contributed to the decline in diarrhea 
mortality since 1990 [3]. As rotavirus vaccines 
are incorporated into more national immunization 
programs [4] and candidate Shigella, Vibrio 
cholerae, and norovirus vaccines undergo further 
assessment in clinical trials [5-7], more attention 
is being devoted to identifying population-level 
and individual host susceptibility factors for 
gastrointestinal infection. One such factor is a 
group of mucosal surface glycans, known as 
histo-blood group antigens (HBGAs), that can act 
as receptors for selected pathogens [8].

HBGAs are polymorphic glycans present on 
mucosal epithelial cell surfaces and in body fluids, 
such as saliva and breast milk, where they may 
also function as decoy receptors. The HBGAs 
include the ABH and Lewis antigens and their 
expression in tissues is controlled by specific 
fucosyltransferase (FUT) genes, specifically the 
FUT2 (secretor) and FUT3 (Lewis) genes [9]. The 
simplest ABH antigens are the H antigens, whose 
precursor type I H antigen is fucosylated at the  
α (1,2) position by FUT2 to form the mature type 
I H antigen or secretor molecule. The type I H 
antigen can then be converted into blood group 
A or B antigens by A or B glycosyltransferases 
respectively, or if these are absent remain as the H 
antigen, characteristic of blood group O. The type 
I H antigen is fucosylated by FUT3 at the α (1,4) 
position to become either the Lewis a antigen when 
the H antigen persists in its precursor form or the 
Lewis b antigen when the mature H antigen has 
had two fucose residues added by the combined 
actions of FUT2 and FUT3 enzymes. Thus, the 
Lewis b antigen is found only in secretors.

Homozygous inactivating mutations in FUT2 
result in the non-secretor phenotype, and although 
individuals with these mutations can still produce 
Lewis a antigens by FUT3 fucosylation of the 
precursor type I H antigen, they do not express 
blood group antigens in tissues or secretions. In 
contrast, while those with FUT3 mutations have 
the Lewis-negative phenotype, if they have an 
intact FUT2 gene they can still express blood 
group antigens in both tissues and secretions and 
have the secretor phenotype. At a population level 
the prevalence of the secretor phenotype varies 
between different ethnicities, being present in 
approximately 70% to 80% of Caucasians, but in 
only 55% of African populations [10, 11].
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People with the secretor phenotype express 
HBGAs on their gut mucosal epithelial cell 
surfaces, which act as cellular receptors for 
several gastrointestinal pathogens, including some 
norovirus strains (especially GII.4) and genotype 
P[8] rotaviruses [12-14]. Volunteer challenge and 
epidemiological studies show that secretors are 
significantly more susceptible to infections by 
these viruses than non-secretors [15-20].

Much less is known about the susceptibility to 
other pathogens shed in stools [21, 22]. Given the 
greatest burden of diarrheal disease is in young 
children [1], longitudinal birth cohort studies 
are the ideal method to examine the association 
between HBGAs and gastrointestinal pathogens. 
However, to date such studies are few and have been 
conducted in low- and middle-income countries of 
Latin America, Africa, and South Asia, focusing 
mainly on norovirus or rotavirus, and sampling 
primarily at the times of acute diarrheal episodes 
or following rotavirus vaccination with only 
one study taking regular monthly stool samples 
irrespective of symptoms [12, 23-26].

To address some of these limitations, the 
primary aim of the current study was to explore 
the association between secretor status and the 
shedding of several viruses, bacteria, and protozoa 
in stools collected weekly from an unselected 
Australian birth cohort until their second birthday. 
This included organisms recognized as genuine 
gastrointestinal pathogens, others that can be shed 
in stools, but are more commonly associated with 
extra-gastrointestinal symptoms, and others whose 
pathogenic status in healthy children has not been 
established. A secondary aim was to explore 
differences in illness severity and healthcare use 
during symptomatic detection episodes by secretor 
status.

Methods

Study characteristics

Study participants were enrolled in the 
Observational Research in Childhood Infectious 
Diseases (ORChID) study, which is registered 
on clinicaltrials.gov (NCT01304914). This was a 
prospective, community-based birth cohort study 
of unselected healthy children born at term and 
conducted in the subtropical city of Brisbane, 
Australia between 2010 and 2014 [27]. The 
ORChID study focused upon respiratory and 
gastrointestinal infections during the first 2 years 

of life. At its completion, children were invited to 
attend annual clinic visits from ages 3 to 7 years 
as part of the Early Life Lung Function (ELLF) 
study [28]. The Children’s Health Queensland, the 
Royal Brisbane and Women’s Hospital, and The 
University of Queensland Human Research Ethics 
Committees approved the studies.

Child and family characteristics were collected 
at baseline, while breastfeeding, formal childcare 
attendance (defined as regulated care outside the 
child’s home), and presence of other children in the 
household were collected progressively. Parents 
recorded a daily diary of pre-defined symptoms, 
including fever and the daily number of loose stools 
and vomits. Diarrhea was defined as 3 or more loose 
(liquid or looser than normal) stools within a 24-
hour period [29], while vomiting was categorized 
as any or none within 24 hours. Acute diarrheal/
vomiting episodes consisted of 1 or more days of 
diarrhea/vomiting, separated by 3 or more days 
without loose stools/vomiting. Parents also kept 
a separate illness burden diary, where healthcare 
utilization associated with a gastrointestinal 
illness was recorded. The modified Vesikari score 
of clinical severity for acute gastroenteritis was 
calculated for each symptomatic episode associated 
with a new pathogen detection. The score ranges 
from 0 to 20, with higher scores indicating more 
severe illness (Supplementary Tab. 1) [30].

Laboratory studies

Parents collected stool samples (from soiled 
diapers) weekly, which were sent by surface mail to 
the research laboratory where they were processed 
and stored at -80°C, a median 3 (interquartile range 
2 to 4) days after their collection [31]. Samples 
were later thawed and batch-tested by real-time 
polymerase chain reaction (PCR) assays [27]. 
Viruses investigated were generic adenovirus, 
group-F adenovirus (types 40/41), classic human 
astrovirus, human bocavirus, enterovirus, norovirus 
genogroup (G) I, norovirus GII, parechovirus A, 
wild-type rotavirus, and sapovirus (groups I/II/
IV/V combined). Rotavirus wild-type and vaccine 
strains were differentiated from one another 
by strain-specific real-time PCR assays [32]. 
Bacteria comprised Campylobacter jejuni/coli, 
Clostridioides difficile (toxins A/B), Salmonella sp., 
Shigella, and Yersinia. Protozoa were Blastocystis 
sp., Cryptosporidium sp., Dientamoeba fragilis, and 
Giardia intestinalis. All virus detections with cycle 
threshold values ≤ 40 were considered positive.
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New detection episodes were either the detection 
of a new pathogen or, if the same pathogen, if the 
subsequent detection was separated by a refractory 
period of at least two negative test results or, if 
intervening samples were not returned, at least 
28 days from when the original pathogen was 
last detected. New pathogen detections were 
categorized as symptomatic if the positive sample 
was collected within 7 days before or 7 days after 
the onset of diarrhea or vomiting.

Saliva samples were collected at the 3-year 
clinic visit for children who participated in the 
ELLF extension study. As detailed further in the 
Supplementary Methods, the saliva samples 
underwent ELISA testing for A, B and H (O) 
HBGAs and Lewis a and b antigens [33]. The 
Ulex Europaeus (UEA-I) agglutinin was used as 
an additional confirmatory test of secretor status. 
To confirm the phenotyping results for secretor 
status, saliva samples were analyzed for 2 FUT2 
genetic variant (rs6013338 and rs602662) single-
nucleotide polymorphisms, which are non-
functional if the mutant allele is present in the 
homozygous state (Supplementary Tab. 2  and 
Supplementary Tab. 3).

Children were categorized as secretors if one or 
more of A, B, AB, Lewis b, or UEA-1 were positive 
by ELISA. Those negative for A and B, with either 
a Lewis a+/b- or Lewis a-/b- phenotype were 
labelled non-secretors. Similarly, the presence of 
Lewis a and/or b antigens identified infants with 
a Lewis-positive phenotype, and their absence a 
Lewis-negative phenotype.

Statistical methods

The at-risk (exposure) period was calculated 
as the period between the first and last submitted 
stool samples. The exposure period excluded all 
but the first day of new detection episodes and a 
refractory period of two or more negative PCR 
results for that organism or, if samples were not 
returned, 28 or more days from when the pathogen 
was last detected. Incidence rates were calculated 
using Poisson regression with the at-risk period 
entered as an exposure-time variable and robust 
variance estimates. Incidence rate ratios and 95% 
confidence intervals (CIs) comparing secretors and 
non-secretors were calculated. When incidence 
rate ratios < 0.67 and > 1.5 were identified they 
were interpreted as possibly signaling a clinical 
effect. The modified Vesikari score summary value 
was reported as a median with inter-quartile range, 

and the association between secretor status and 
modified Vesikari score was tested using median 
regression. A difference in the modified Vesikari 
scores of at least 3 was considered clinically 
significant [30]. Healthcare utilization was coded 
as any or none. To compare the risk of healthcare 
use during symptomatic detections by secretor 
status, absolute (risk difference) and relative 
(relative risk) measures were calculated. When risk 
difference was ≥ 30% or relative risk was < 0.67 or 
> 1.5 this too was interpreted as possibly signaling 
a clinical effect. Two-tailed p-values < 0.05 were 
considered statistically significant. Stata software 
(StataCorp, 2019, Stata® Statistical Software: 
Release 16; College Station, TX: StataCorp LLC) 
was used.

Results

Of the 158 children returning stool samples in 
the first 2 years of life during the ORChID study, 
86 participated in the ELLF follow-up study 
and 84 provided saliva. Their characteristics are 
outlined in Tab. 1 and are similar to those of the 
total ORChID cohort. Eighty-two percent (69/84) 
of children provided stool samples until at least 
23 months of age, for a total observation period of 
157 child-years. Just over half (56%) the children 
were introduced to food other than breastmilk by 4 
months of age and breastfeeding ceased completely 
for most (55%) children in this cohort by age 12 
months. Most (60%) had attended formal childcare 
by 18 months of age and almost all (93%) were 
fully vaccinated against rotavirus by 32 weeks of 
age (Tab. 1).

Tab. 2 shows that non-group F adenovirus had 
the greatest number of new detection episodes in 
stool samples (n = 367), followed by enterovirus (n 
= 316), D. fragilis (n = 239), and human bocavirus 
(n = 225). Of the established gastrointestinal 
pathogens associated with diarrheal disease, 
sapovirus was the most common (n = 129), 
followed by norovirus GII (n = 120), classic human 
astrovirus (n = 72), and enteric adenovirus 40/41 
(n = 56). In this highly vaccinated cohort (Tab. 1), 
there were just 11 wild-type rotavirus infections, 
involving 8 P[8] and 3 P[4] genotypic strains.

Seventy-seven percent (65/84) of participants 
were categorized as secretors, while all 19 non-
secretors were also homozygous for the 2 FUT2 
inactivating single-nucleotide polymorphisms. 
Secretors had a substantially higher rate of new 
detections for norovirus GI and GII, wild-type 
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Table 1. Characteristics of study participants.

Characteristics a Current study
(n = 84)

ORChID cohort
(n = 158)

Sex: female 44 (52%) 83 (53%)

Season of birth

Spring 23 (27%) 43 (27%)

Summer 23 (27%) 42 (27%)

Autumn 16 (19%) 30 (19%)

Winter 22 (26%) 43 (27%)

Delivery method: vaginal 55 (65%) 107 (68%)

Mother’s highest level of education

High school 30 (36%) 58 (37%)

University 54 (64%) 99 (63%)

Missing data - 1

Household income b

≥ $115,000 51 (61%) 86 (55%)

$67,500-$114,999 28 (34%) 52 (34%)

< $67,500 4 (5%) 17 (11%)

Missing data 1 3

Older sibling(s) at home 30 (36%) 55 (35%)

Age at end of breastfeeding (exclusive/any) c

1 month 37% / 2% 46% / 7%

3 months 46% / 8% 56% / 17%

6 months 99% / 21% 99% / 28%

12 months 100% / 55% 100% / 60%

Age of formal childcare attendance d

6 months 12% 13%

12 months 43% 47%

18 months 60% 64%

24 months 67% 72%

Rotavirus vaccination e 78/84 (93%) 122/136 f (90%)

ABO profile

A-secretor 27 (32%) n/a

B-secretor 3 (4%) n/a

AB-secretor 1 (1%) n/a

O-secretor 34 (40%) n/a

Non-secretor 19 (23%) n/a

Lewis a/b profile

a- b- 5 (6%) n/a

a- b+ 59 (70%) n/a

a+ b- 18 (21%) n/a

a+ b+ 2 (2%) n/a

Secretor/Lewis phenotype

Se+ Le+ 61 (73%) n/a

Se+ Le- 4 (5%) n/a

Se- Le+ 18 (21%) n/a

Se- Le- 1 (1%) n/a

Secretor 65 (77%) n/a

n/a: not available.
a frequencies and percentages shown unless otherwise noted; b gross, per year, Australian Dollars, 2012; c calculated using life tables; 
d formal childcare was regulated care outside the child’s home; e n/N (%) shown, fully vaccinated if received 3 doses by < 32 weeks of 
age of the pentavalent human-bovine reassortant vaccine (RotaTeq; Commonwealth Serum Laboratories/Merck and Co Inc), which was 
Queensland’s publicly funded rotavirus vaccine during the ORChID study and administered in a 3-dose schedule at 6 weeks, 4, and 6 
months of age, with the upper age limit for the third dose being 32 weeks; f 136 of the initial 158 children remained in the study at the end 
of the 32nd week of age.
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rotavirus, and Campylobacter, although this 
was only significant for norovirus GII (Tab. 
2). Similarly, Salmonella was detected only in 
secretors, although the number of new detection 
episodes (n = 8) was small. In contrast, secretors 
had a significantly lower rate of new detections of 
Blastocystis.

Most detection episodes were asymptomatic. 
The incidence rate ratios of new asymptomatic 
detections comparing secretors with non-
secretors were, except for classical human 
astrovirus, enterovirus, and Cryptosporidium, 
in the same direction as symptomatic detections 
(Supplementary Tab. 4). Secretors were 
significantly less likely than non-secretors to have 
symptomatic adenovirus 40/41 infections and 
their modified Vesikari scores were substantially 
lower during symptomatic adenovirus 40/41 and 
human bocavirus detection episodes, with the 
difference being significant for human bocavirus 
(Supplementary Tab. 5). Healthcare utilization 
also occurred less frequently for secretors 
during symptomatic adenovirus 40/41 and D. 

fragilis episodes, but numbers were small, and 
no differences were statistically significant 
(Supplementary Tab. 6).

Discussion

In our study of 84 children living in a 
subtropical state capital city in Australia, 77% 
of children were found to be HBGA secretors on 
analysis of their saliva samples. This is similar 
to the proportion of secretors reported in other 
Caucasian populations (70-80%) [10, 11]. The 
incidence rate ratios were at least 50% greater 
in secretors for norovirus GI and GII, wild-type 
rotavirus, and Campylobacter detection, while 
they were lower for Blastocystis. The difference 
in incidence rates between secretors and non-
secretors was significant for norovirus GII and 
Blastocystis, while illness severity and healthcare 
use with infection were similar.

Our findings of elevated susceptibility in 
secretors for norovirus, the wild-type rotavirus, 
and Campylobacter, all important causes of 

Table 2. Incidence rates per child-year and incidence rate ratios with their corresponding 95% confidence intervals for new 
pathogen detections by secretor status (Poisson regressions, n = 84).

Pathogen a Freq. Secretor  
(n = 65)

Non-secretor  
(n = 19)

Incidence rate ratio
(secretors/non-

secretors)

Adenovirus (non-F) 367 3.02 (2.69-3.39) 3.29 (2.65-4.08) 0.92 (0.72-1.17)

Adenovirus (40/41) 56 0.34 (0.25-0.46) 0.48 (0.29-0.78) 0.70 (0.39-1.26)

Enterovirus 316 2.33 (2.05-2.64) 2.69 (2.15-3.37) 0.86 (0.67-1.12)

Human astrovirus 72 0.48 (0.37-0.62) 0.45 (0.27-0.74) 1.08 (0.61-1.91)

Human bocavirus 225 1.53 (1.32-1.78) 1.90 (1.47-2.46) 0.81 (0.60-1.09)

Norovirus GI 23 0.17 (0.11-0.26) 0.09 (0.03-0.27) 1.90 (0.57-6.40)

Norovirus GII 120 0.90 (0.74-1.09) 0.48 (0.29-0.78) 1.89 (1.12-3.20) c

Parechovirus A 179 1.41 (1.20-1.66) 1.07 (0.76-1.51) 1.32 (0.90-1.92)

Rotavirus (wild-type b) 11 0.08 (0.04-0.15) 0.03 (0.00-0.21) 2.85 (0.36-22.3)

Sapovirus (I/II/IV/V) 129 0.85 (0.70-1.03) 0.96 (0.67-1.36) 0.88 (0.59-1.33)

Campylobacter sp. 9 0.07 (0.03-0.13) 0.03 (0.00-0.21) 2.28 (0.28-18.2)

Clostridoides difficile 163 1.19 (1.00-1.42) 1.40 (1.04-1.90) 0.85 (0.60-1.21)

Salmonella sp. 8 0.07 (0.03-0.14) n/c n/c

Blastocystis hominis 10 0.04 (0.02-0.10) 0.15 (0.06-0.36) 0.28 (0.08-0.96) c

Cryptosporidium sp. 23 0.15 (0.09-0.24) 0.15 (0.06-0.35) 1.02 (0.38-2.74)

Dientamoeba fragilis 239 1.67 (1.44-1.93) 1.99 (1.55-2.56) 0.84 (0.63-1.12)

Giardia intestinalis 5 0.03 (0.01-0.09) 0.03 (0.00-0.21) 1.10 (0.12-9.88)

Freq.: frequency; n/c: not able to be calculated; sp.: species. 
a Shigella and Yersinia excluded as they were not detected in the cohort; b wild-type rotavirus P[8] genotype was detected in 73% (8/11) 
of all wild-type rotavirus detections; c statistically significant (at p < 0.05).
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acute diarrheal illness in Australia [34], agree 
with the previous literature [12, 14, 35]. The 
elevated susceptibility in secretors followed the 
same pattern for symptomatic and asymptomatic 
detections in our study, and is consistent with 
earlier observations [13, 36]. Similar to reports 
from Europe, North and Central America, and 
Asia, where the population is also more likely to 
be secretor and Lewis-positive, the wild-type P[8] 
and P[4] rotaviruses predominated in our study [9]. 
Although there were only 8 Salmonella infections, 
these were confined to secretor children, which was 
unexpected as non-secretors have been deemed to 
be more susceptible [8].

Our results showed increased susceptibility 
in non-secretors for approximately half of the 
pathogens assessed. Despite their relatively low 
incidence (10 detections), the higher rates in non-
secretors compared to secretors was significant 
for Blastocystis, a suspected intestinal commensal 
in immunocompetent hosts [37]. Nevertheless, 
for other shed pathogens, the effect sizes in 
non-secretors were small and non-significant. 
These included the recognized gastrointestinal 
pathogens, group-F adenovirus types 40/41 and 
sapovirus, as well as pathogens commonly shed in 
stools, but more associated with respiratory and/
or systemic symptoms, such as other adenovirus 
types and enterovirus, while like Blastocystis, D. 
fragilis is still regarded as a bowel commensal 
rather than a genuine pathogen [37, 38]. In 
general, our results are consistent with the 
MAL-ED multi-national birth cohort study from 
Bangladesh, Peru, and Tanzania, which found an 
association between HBGA status and infections 
with norovirus, rotavirus, and Campylobacter, 
but did not identify similar associations with 
group-F adenovirus, classical human astrovirus, 
or sapovirus [12].

The positive association between secretors and 
the risk of norovirus GII infection has been well 
documented in challenge and outbreak studies [13, 
14]. However, it is also important to recognize that 
resistance to norovirus infections by non-secretors 
is not absolute. As shown in the current study, 
non-secretors can still shed noroviruses in their 
stools and develop symptoms. This is because with 
the absence of HBGAs and resulting decreased 
competition for glycosyltransferase, non-secretors 
have elevated levels of sialylated glycans in their 
mucosal tissue and secretions, and these can act 
as receptors for secretor-independent GI and GII 
norovirus strains [8, 39]. Although the results 

of the ORChID birth cohort cannot be directly 
compared with previous evidence as participants 
of prospective studies could have differing 
exposure durations, our results align with a 2016 
meta-analysis of the association between secretor 
status and norovirus infections [14]. The ORChID 
study was novel as it observed asymptomatic 
detections while most cohort studies to date 
adopted clinical symptoms as an outcome [13, 
23-26]. Asymptomatic shedders may nevertheless 
play an important role in outbreaks, and should be 
identified to fully understand their transmissibility 
and potential for harm within the community 
[40]. Finally, to help inform disease prevention 
measures, local community-level evidence is 
required, which is what studies such as ORChID 
seek to achieve [13].

The regular sampling applied during the 
ORChID study is the ideal method for detecting 
pathogen shedding in stools and capturing any 
associated symptoms [41, 42]. Our findings 
benefited from good participant retention and 
protocol adherence. There are limited data on 
the role of HBGA expression and infections 
with a broader spectrum of gastrointestinal 
pathogens [21]. The inclusion of a wider range 
of gastrointestinal viruses, bacteria, and protozoa 
also makes this study unique. We presented 
illness severity and healthcare use associated with 
symptomatic norovirus GII detections by secretor 
status, for which there is limited information, but 
this could be useful for evaluating health-economic 
benefits of future norovirus vaccination.

Nevertheless, there are important limitations. 
These include not typing noroviruses beyond 
the genogroup level. However, at the time of the 
ORChID study norovirus G II predominated in the 
Australian community and this coincided with the 
rise of the pandemic variant GII.4, Sydney 2012 
[43, 44], which is strongly linked with secretor 
status in children [12, 14, 23, 25, 26]. The 
results were affected by having a homogenous 
population with few Lewis-negative individuals 
and the relatively low incidence of detections for 
many pathogens, resulting in insufficient power 
despite moderate sized effects being present. We 
also did not determine the maternal HBGA status, 
which in secretor positive women may influence 
breastmilk and infant gut microbiota composition 
and also increase susceptibility to gastrointestinal 
infection in early life [12]. Although exclusive 
breastfeeding in the study cohort was very 
common in the first few weeks of life, this virtually 
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ceased by 6 months of age, and during this period 
detection of viral gastrointestinal pathogens was 
uncommon [45]. Finally, symptomatic episodes 
associated with more than one new pathogen 
detection were attributed equally to each of these 
agents.

In conclusion, our study confirmed that 
secretors in our study population were more likely 
to have norovirus GII infections, but a novel 
finding was that they were less likely to have 
Blastocystis detections than non-secretors during 
the first 2 years of life. Investigation of a range of 
other viruses, bacteria, and protozoa shed in stools 
did not provide definitive results. Symptomatic 
and asymptomatic detections, illness severity, 
and healthcare utilization were generally similar 
between secretor and non-secretor children. Our 
results help strengthen evidence of increased 
norovirus-susceptibility in young secretor Austra-
lian children.

Data availability

To discuss accessing ORChID data please contact the corresponding 

author.
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ELISA for ABH (ABO) histo-blood group, Lewis a, and Lewis b  
antigens
ELISA assays detected histo-blood group antigens (HBGAs) and 
Lewis antigens in saliva according to published methods with 
modifications [33].
Saliva samples were collected using eye spears (Defries Industries, 
Dandenong South, Victoria, Australia). Eye spears were centrifuged 
for 5 minutes at 3,000 × g. Supernatants were stored at -80°C until 
batch testing for HBGA. Thawed samples were heated for 5 minutes 
at 95°C and then diluted 1:250 in 0.05 M Carbonate-Bicarbonate 
coating buffer pH 9.6 (Sigma, Merck, North Ryde, NSW, Australia). 
A 100 μL aliquot of the diluted sample was coated onto flat bottom, 
high binding ELISA plates (Jet Biofil, DKSH, Hallam, Victoria, 
Australia) and incubated at 37°C for 2 hours before being left at 
4°C overnight. The next day, the coated plates were washed 4 
times in the wash buffer; 0.01 M of Phosphate buffered saline (NaCl 
0.138M, KCl-0.0027M) with 0.05% Tween 20, pH 7.4 (Sigma). The 
washed plates were then either incubated with primary antibodies 
or negative control reagents for 90 minutes at room temperature. 
Primary antibodies used were anti-A, anti-B, anti-AB, anti-Leb 
from Diagast (Loos, France; Paragon Care Group Company, 
Chatswood, NSW, Australia), and anti-Lea from Seraclone (Biorad 
Laboratories). Negative control reagents were from Diagast. Primary 
antibodies were diluted 1:5,000 in SuperBlock T20 (PBS) Blocking 
buffer (Thermofisher Scientific) for anti-A, anti-B, anti-AB, and anti-
Leb; 1:1,000 for anti-Lea and the same dilutions of negative control 
reagents were used as for the corresponding primary antibodies. 
Plates were then washed 4 times with the wash buffer and incubated 
with 100 µL of the secondary antibody Goat-anti-mouse (H+L) IgG 
EIA grade Horse Radish Peroxidase (Biorad) at room temperature 
for 90 minutes (1:3,000). After 4 washes in wash buffer, color was 
developed at room temperature for 30 minutes using 100 µL of 
the chromogenic substrate 3,3’5,5’-Tetramethylbenzidine (TMB) 
(Thermofisher Scientific). Color development was stopped by 
adding 100 μL of 2M H2SO4 and signals were read at 450 nm with 
a chromogenic plate reader (FLUOstar Omega, BMG Labtech, 
Mount Eliza, Victoria, Australia).

UEA-I ELISA assay
The plant lectin UEA-I (Sigma) was used as additional confirmatory 
test for the secretory status of samples. The UEA-I ELISA aided in 
distinguishing between secretory Group O and non-secretory, non-

Group O cases in a subset of Lewis negative (a-/b-) participants. 
In addition, UEA-I could also confirm secretory status where 
participants appeared concurrently positive for anti-A, anti-B, and 
anti-AB.
One hundred μL aliquots of heated and diluted (1:250) saliva 
supernatant were coated onto flat bottom, high-binding ELISA 
plates (Jet Biofil, DKSH) at 37°C for 2 hours, then left overnight 
at 4°C before being washed the next day as described above in 
the HBGA and Lewis ELISA assays. PBS-reconstituted Horse 
Radish Peroxidase conjugated UEA-I (1 mg/mL) was diluted 
1:1,000 in Superblock T20 (PBS) Blocking buffer and added to the 
reaction wells and incubated for 90 minutes at room temperature. 
After 4 further washes in wash buffer, TMB was added for color 
development, the reaction was stopped with 100 μL of 2M H2SO4 
and signals read at 450 nm on a plate reader as described above.

FUT2 genetic variants genotyping
Two fucosyltransferase 2 (FUT2) genetic variants with single-
nucleotide polymorphisms (rs601338 and rs602662 on 
chromosome 19) associated with the non-secretor phenotype 
were investigated in this study [46]. Fifty µL of saliva collected from 
children underwent nucleic acid extraction using QIAmp DNA Mini 
kit (Qiagen, Chadstone, VIC, Australia) following the manufacturer’s 
protocol: ‘DNA Purification from Blood or Body Fluids’. DNA eluate 
was subsequently analysed by polymerase chain reaction (PCR) 
to amplify the FUT2 genetic region (~423 bp) containing the two 
polymorphisms. Each 25 µL PCR reaction consisted of 12.5 µl of 
the 2× QuantiTect SYBR Green PCR Master Mix (Qiagen), 0.3 µM 
of forward and reverse primers (Supplementary Tab. 2) and 5 µl 
of DNA extract. PCR was performed in a Rotorgene Q instrument 
(Qiagen) under the following conditions: 15 minutes incubation 
at 95°C, followed by 45 cycles of 94°C for 15 seconds, 50°C for 
30 seconds, and 72°C for 30 seconds. A final step of melt curve 
analysis was added with a melting profile of 55° to 95°C at 1°C 
per second. PCR amplicons with a single melt curve peak at 88 to 
89°C were submitted to the Australian Genome Research Facility 
for Sanger sequencing. Sequences from each child were aligned 
with reference sequences retrieved from dbSNP Short Genetic 
Variation database (NCBI) using Geneious R10 (Biomatters Ltd., 
New Zealand) to determine either the wildtype (G) or the mutant 
allele (A) associated with rs601338 and rs602662 on the FUT2 
gene (Supplementary Tab. 3).

Scoring points 1 2 3
Duration of diarrheal illness (days) 1 to 4 5 ≥ 6
Highest daily number of loose stools 1 to 3 4 or 5 ≥ 6
Duration of vomiting illness (days) 1 2 ≥ 3
Highest daily number of vomiting episodes 1 2 to 4 ≥ 5
Max. recorded body temperature a, b 37.1-38.4°C 38.5-38.9°C ≥ 39°C
Healthcare use None Primary care physician ED
Treatment Intravenous rehydration Hospitalization -

ED: Emergency Department.
a Temperature readings ≤ 37.5°C were not recorded in symptom diaries; b missing temperature values were assumed to be in the 37.1 to 
38.4°C range for severity scoring purposes.

Supplementary Table 1. The modified Vesikari score of illness severity used in this study, adapted from Schnadower, et 
al. [30].

Name Oligonucleotide sequences (5’ to 3’)
Forward primer AACTACCACCTGAACGACTGG
Reverse primer ACACTGTGTGAGTAGAGCAAAATC

Supplementary Table 2. Oligonucleotide sequences for FUT2 genotyping.

Supplementary Methods.
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SNP Wild-type to mutant AA change Phenotype association Mutation type

rs601338 TGG[W] to TAG[stop] Trp143ter Non-secretor Non-sense

rs602662 GGT[G] to AGT[S] Gly258ser Non-secretor Mis-sense

AA: amino acid; SNP: single nucleotide polymorphism. 
Table adapted from dbSNP Short Genetic Variations database (NCBI).

Supplementary Table 3. rs601338 and rs602662 polymorphisms and associated amino acid and phenotype changes.

Supplementary Table 4. Incidence rates per child-year, incidence rate ratios, and corresponding 95% confidence intervals 
for new detection episodes of various pathogens by secretor phenotype and symptomatic status in cohort children who 
returned contemporaneous symptom diaries.

Pathogen a Freq. IR in secretors
(n = 63)

IR in non-secretors
(n = 21)

Incidence rate ratio
(secretors/non-

secretors)

Adenovirus (non-F)
Symptomatic 44 0.35 (0.25, 0.49) 0.44 (0.24, 0.79) 0.80 (0.41, 1.59)

Asymptomatic 303 2.47 (2.17, 2.81) 2.82 (2.23, 3.55) 0.88 (0.67, 1.14)

Adenovirus (40/41)
Symptomatic 9 0.03 (0.01, 0.09) 0.15 (0.06, 0.36) 0.23 (0.06, 0.84) b

Asymptomatic 43 0.28 (0.20, 0.39) 0.30 (0.16, 0.55) 0.93 (0.46, 1.88)

Enterovirus
Symptomatic 51 0.39 (0.29, 0.53) 0.38 (0.21, 0.69) 1.01 (0.52, 1.97)

Asymptomatic 251 1.81 (1.57, 2.09) 2.27 (1.78, 2.90) 0.80 (0.60, 1.06)

Human astrovirus
Symptomatic 14 0.08 (0.05, 0.16) 0.12 (0.04, 0.32) 0.71 (0.22, 2.26)

Asymptomatic 56 0.38 (0.28, 0.51) 0.33 (0.18, 0.59) 1.16 (0.60, 2.25)

Human bocavirus
Symptomatic 27 0.19 (0.12, 0.29) 0.20 (0.09, 0.45) 0.96 (0.39, 2.37)

Asymptomatic 194 1.31 (1.12, 1.55) 1.67 (1.26, 2.20) 0.79 (0.57, 1.09)

Norovirus GI
Symptomatic 5 0.04 (0.02, 0.10) n/c n/c

Asymptomatic 17 0.12 (0.07, 0.20) 0.09 (0.03, 0.27) 1.33 (0.38, 4.63)

Norovirus GII
Symptomatic 52 0.40 (0.30, 0.53) 0.18 (0.08, 0.40) 2.23 (0.95, 5.23)

Asymptomatic 59 0.42 (0.32, 0.56) 0.30 (0.16, 0.55) 1.43 (0.72, 2.82)

Parechovirus A
Symptomatic 21 0.16 (0.10, 0.26) 0.13 (0.05, 0.35) 1.27 (0.43, 3.76)

Asymptomatic 149 1.16 (0.97, 1.39) 0.94 (0.65, 1.35) 1.23 (0.82, 1.85)

Rotavirus (wild-type)
Symptomatic 4 0.03 (0.01, 0.09) n/c n/c

Asymptomatic 6 0.04 (0.02, 0.10) 0.03 (0.00, 0.21) 1.42 (0.17, 12.19)

Sapovirus (I/II/IV/V)
Symptomatic 37 0.24 (0.17, 0.35) 0.28 (0.14, 0.53) 0.87 (0.41, 1.85)

Asymptomatic 88 0.57 (0.45, 0.73) 0.68 (0.45, 1.03) 0.84 (0.52, 1.36)

Campylobacter species
Symptomatic 0 n/c n/c n/c

Asymptomatic 9 0.07 (0.03, 0.13) 0.03 (0.00, 0.21) 2.28 (0.28, 18.21)

Clostridioides difficile
Symptomatic 15 0.10 (0.05, 0.18) 0.17 (0.07, 0.40) 0.59 (0.20, 1.72)

Asymptomatic 143 1.04 (0.86, 1.26) 1.24 (0.90, 1.71) 0.84 (0.58, 1.23)

Salmonella species
Symptomatic 2 0.02 (0.00, 0.07) n/c n/c

Asymptomatic 5 0.04 (0.02, 0.10) n/c n/c

Blastocystis hominis
Symptomatic 3 0.01 (0.00, 0.06) 0.06 (0.01, 0.24) 0.14 (0.01, 1.53)

Asymptomatic 7 0.03 (0.01, 0.09) 0.09 (0.03, 0.28) 0.37 (0.08, 1.65)

Cryptosporidium species
Symptomatic 6 0.04 (0.02, 0.10) 0.03 (0.00, 0.21) 1.41 (0.17, 12.1)

Asymptomatic 15 0.09 (0.05, 0.16) 0.12 (0.04, 0.31) 0.78 (0.25, 2.44)

Dientamoeba fragilis
Symptomatic 22 0.15 (0.09, 0.24) 0.20 (0.09, 0.44) 0.77 (0.30, 1.96)

Asymptomatic 209 1.44 (1.23, 1.69) 1.79 (1.38, 2.34) 0.80 (0.59, 1.09)

Giardia intestinalis
Symptomatic 0 n/c n/c n/c

Asymptomatic 5 0.03 (0.01, 0.09) 0.03 (0.00, 0.21) 1.10 (0.12, 9.88)

Freq.: frequency; IR: incidence rate per child-year; n/c: cannot be calculated. 
a Shigella and Yersinia excluded due to no detections; b statistically significant at p < 0.05.
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Supplementary Table 5. Severity (modified Vesikari score) of new symptomatic pathogen detection episodes by 
secretor status.

Pathogens a
Secretors Non-secretors Median 

difference b  

(95% CI)n median (IQR) n median (IQR)

Adenovirus (non-F) 33 3 (2, 5) 11 4 (3, 7) -1.0 (-3.1, 1.1)

Adenovirus (40/41) 4 5 (3, 6.5) 5 8 (7, 11) -4.0 (-9.2, 1.2)

Enterovirus 40 3 (2.5, 5) 11 3 (3, 4) 0.0 (-1.7, 1.7)

Human astrovirus 10 2.5 (2, 6) 4 3.5 (2.5, 4) 0.0 (-3.9, 3.9)

Human bocavirus 21 3 (2, 5) 6 5.5 (3, 11) -5.0 (-8.0, -2.0) c

Norovirus GI 5 3 (2, 3) 0 n/c n/c

Norovirus GII 46 4 (3, 6) 6 3.5 (3, 8) 0.0 (-2.7, 2.7)

Parechovirus A 16 4.5 (3, 5) 4 3.5 (2.5, 6) 0.0 (-3.6, 3.6)

Rotavirus (wild-type) 4 6 (2.5, 9.5) 0 n/c n/c

Sapovirus (I/II/IV/V) 28 4 (3, 5) 9 3 (3, 3) 1.0 (-0.8, 2.8)

Clostridoides difficile 10 3.5 (2, 6) 5 3 (2, 4) 1.0 (-1.8, 3.8)

Salmonella sp. 2 7.5 (5, 10) 0 n/c n/c

Blastocystis hominis 1 2 (2, 2) 2 4.5 (2, 7) n/c

Cryptosporidium sp. 5 4 (4, 6) 1 3 (3, 3) n/c

Dientamoeba fragilis 16 3 (2, 4.5) 6 3 (3, 3) 0.0 (-2.0, 2.0)

CI: confidence interval; IQR: interquartile range; n: number; n/c: cannot be calculated; sp.: species. 
a Shigella, Yersinia, Campylobacter, and Giardia excluded as there were no symptomatic detection episodes; b calculated with quantile 
(median) regression;  c statistically significant at p < 0.05.

Supplementary Table 6. Risk of healthcare utilization (any type) during new symptomatic pathogen detection episodes 
by secretor status.

Pathogens a
Secretors Non-secretors Risk difference

(95% CI)
Relative risk

(95% CI)N n (%) N n (%)

Adenovirus (non-F) 33 7 (21%) 11 3 (27%) -0.06 (-0.36, 0.24) 0.78 (0.24, 2.50)

Adenovirus (40/41) 4 1 (25%) 5 3 (60%) -0.35 (-0.95, 0.25) 0.42 (0.07, 2.63)

Enterovirus 40 8 (20%) 11 3 (27%) -0.07 (-0.36, 0.22) 0.73 (0.23, 2.31)

Human astrovirus 10 2 (20%) 4 0 (0%) 0.20 (-0.05, 0.45) n/c

Human bocavirus 21 5 (24%) 6 2 (33%) -0.10 (-0.51, 0.32) 0.71 (0.18, 2.80)

Norovirus GII 46 15 (33%) 6 2 (33%) -0.01 (-0.41, 0.39) 0.98 (0.29, 3.27)

Parechovirus A 17 4 (24%) 4 0 (0%) 0.24 (0.03, 0.44) n/c

Sapovirus (I/II/IV/V) 28 7 (25%) 9 1 (11%) 0.14 (-0.12, 0.40) 2.25 (0.32, 15.9)

Clostridoides difficile 10 4 (40%) 5 1 (20%) 0.20 (-0.26, 0.66) 2.00 (0.30, 13.5)

Blastocystis hominis 1 0 (0%) 2 1 (50%) -0.50 (-1.19, 0.19) n/c

Cryptosporidium sp. 5 2 (40%) 1 0 (0%) 0.40 (-0.03, 0.83) n/c

Dientamoeba fragilis 16 3 (19%) 6 3 (50%) -0.31 (-0.76, 0.13) 0.38 (0.10, 1.37)

CI: confidence interval; N: number of symptomatic episodes; n: number who sought healthcare; n/c: cannot be calculated; sp: species. 
a Norovirus GI, wild-type rotavirus, Campylobacter, Salmonella, Shigella, Yersinia, and Giardia were excluded because of either no or 
insufficient number of symptomatic detection episodes.
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