COVID-19 in newborns and in children: the state of the art

Valentina Paraluppi1, Maria Cristina Pintus2, Vassilios Fanos3, Maria Antonietta Marcialis2

1School of Pediatrics, University of Cagliari, Cagliari, Italy
2Neonatal Intensive Care Unit, Azienda Ospedalera Universitaria, Cagliari, Italy
3Neonatal Intensive Care Unit, Azienda Ospedalera Universitaria and University of Cagliari, Cagliari, Italy

Abstract

Novel COronaVIrus Disease 2019 (COVID-19) is an emerging disease of public health concern because it is caused by a newly identified pathogen, against which humans have no pre-existing immunity. Since its outbreak, a growing number of studies have examined COVID-19 in adults, but the data on its epidemiological and clinical characteristics in newborns and in children are few and patchy. Children appear to develop moderate-mild or silent forms of the disease; to our knowledge, only two cases of death (a 14-year-old and a 16-year-old teenagers) have been reported. Arguably, the number of pediatric cases may be underestimated, since presumably cases with mild or no symptoms are not brought to the doctor’s attention. We have selected the most interesting and significant papers (including some pre-publication or ahead-of-print papers). The key factors in the pathophysiology of COVID-19, available data on pregnancy, the neonatal period, and later are discussed. A review of pediatric cases is available and 3 practical algorithms help the reader in clinical choices. Finally, diagnostic criteria and treatment are presented.

Keywords

COVID-19, SARS-CoV-2, Coronavirus, pregnancy, newborn, infant, child, review.

Corresponding author

Vassilios Fanos, Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria and University of Cagliari, Cagliari, Italy; email: vafanos@jpnim.com.

How to cite

Introduction

Novel CoRonaVIrus Disease 2019 (COVID-19) is an emerging disease of public health concern because it is caused by a newly identified pathogen, against which humans have no pre-existing immunity.

Since its outbreak, a growing number of studies have examined COVID-19 in adults, but the data on its epidemiological and clinical characteristics in newborns and in children are few and patchy.

In adults, the severity of the disease can range from asymptomatic to causing severe interstitial pneumonia and death.

In children, it is not easy to determine the extent of the infection, because they seem to be less susceptible. Children appear to develop moderate-mild or silent forms of the disease and, to our knowledge, only one case of death, in a 14-year-old boy, has been reported in medical literature [1]. Arguably, the number of pediatric cases may be underestimated, since presumably cases with mild or no symptoms are not brought to the doctor’s attention. Unfortunately, limited clinical identification, combined with children’s intense community life and low adherence to hygiene standards, could lead to a significant increase in cases and the spread of the epidemic [2].

We have examined the relevant literature and we have selected the most interesting and significant papers. Note that some are pre-publication or ahead-of-print papers.

2019 novel Coronavirus (SARS-CoV-2)

Coronaviruses are a large family of viruses that cause illness ranging from common colds to more serious diseases, such as Middle Eastern Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). Coronaviruses have large single-stranded RNA genomes, with a crown-like appearance under an electron microscope. The Orthocoronavirine subfamily of the Coronaviridae is classified into four Coronavirus (CoV) genera: Alpha-, Beta-, Delta- and Gammacoronavirus. The Betacoronavirus genus is further separated into five subgenera (including Sarbecovirus).

The novel Coronavirus, which is responsible for the respiratory disease now called COVID-19, is closely related to SARS-CoV and is genetically classified within the subgenus Betacoronavirus Sarbecovirus [3]. Thus, the virus causing the current Coronavirus outbreak has been called ‘Severe acute respiratory syndrome Coronavirus 2’ (SARS-CoV-2) and the disease it causes has been named ‘COVID-19’ (where ‘CO’ stands for ‘corona’, ‘VI’ for ‘virus’, ‘D’ for ‘disease’ and ‘19’ indicates the year in which it occurred). In order to simplify this discussion, we will conventionally use the term COVID-19 also to refer to the SARS-CoV-2.

The key factors in the pathophysiology of COVID-19

Similarly to what has been shown for SARS, recent studies and analyses indicate that Angiotensin-Converting Enzyme 2 (ACE2) could be the host receptor for COVID-19 [4]. ACE2 is located on the surface of type II pneumocytes and also in the gut, heart, oral cavity, kidney, testis and placenta [5-9].

ACE2 regulates the renin-angiotensin system (RAS) by counterbalancing the Angiotensin-Converting Enzyme (ACE) activity. ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 inactivates angiotensin II to form angiotensin 1-7 negatively regulating the system. In mice, ACE2 and the angiotensin II type 2 receptor (AT2) protect the animal from severe acute lung injury induced by acid aspiration or sepsis. Other components of the RAS, including ACE, angiotensin II and the angiotensin II type 1a receptor (AT1a), promote disease pathogenesis, induce lung edema, vasoconstriction and a proinflammatory state, and induce tissue fibrosis in the heart and lung [10, 11]. The viral spike protein (S protein) is cleaved by cathepsin, furin protease and transmembrane protease serine 2 (TMPRSS2) into subunits S1 and S2. S1 contains the receptor-binding domain which allows Coronaviruses to directly bind to the peptidase domain of ACE2. Subsequently, S2 plays an important role in the infection because it facilitates the fusion between the virus and the host cell membrane [4]. Once inside, the virus releases its RNA into the cytoplasm. The viral entry and replication together with the action of angiotensin II via the AT1 receptors cause severe lung injury (Fig. 1).

In light of the above mechanisms, the following potential therapeutic approaches have been proposed:

- a COVID-19 S protein-based vaccine;
- a TMPRSS2 inhibitor to block the priming of the spike protein [4];
- antibodies or small molecules that could block ACE2 receptor at the interaction sites between ACE2 and COVID-19;
- use of angiotensin II receptor blockers (like telmisartan or losartan) available for clinical use as potential drugs to control viral spread [12].
The expression of ACE2 may change according to age, gender, race and underlying conditions such as diabetes, hypertension, coronary heart disease and cerebrovascular disease [13, 14]. Furthermore, some drugs like ACE inhibitors, AT2 blockers and ibuprofen could increase ACE2 expression, which might facilitate the infection with COVID-19 [15]. These data are very contrasting. It seems clear that several factors, in addition to ACE2 receptors, are involved in lung damage during viral infection, first of all, inflammatory mediators [16].

In order to counter immune overreaction that can damage lung tissue, antirheumatic drugs such as hydroxychloroquine or tocilizumab are being used.

COVID-19 and pregnancy

According to the first published case series of 19 pregnant women with clinical symptoms of COVID-19, the virus was not detected in amniotic fluid or in the neonatal blood taken from the umbilical cord [17]. Moreover, 9 mothers who were infected during the third trimester of pregnancy delivered by Cesarean section 9 healthy uninfected infants [17].

It should be stressed that pathology examination of the placenta of 3 pregnant women with COVID-19 infection who gave birth by Cesarean section showed no morphological changes related to...
the viral infection, and that the search for the virus in the placental tissue was negative. The swabs of the 3 newborns were also negative [18].

Due to the very low expression of ACE2 receptors in almost all cell types of the early maternal-fetal interface, COVID-19 cannot be passed from mother to fetus via transplacental vertical transmission [9].

However, during vaginal delivery, active pushing while wearing a mask would be difficult for the mother; therefore, the newborn may catch the infection at birth from droplets or stool. Lastly, if a newborn stays in close contact with the infected mother, it is likely to become infected [19].

Therefore, the limited case series currently available show no evidence of vertical transmission of COVID-19. However, the news media have reported one case of possible vertical transmission of the infection in the womb, identified on 13 March 2020. The pharyngeal swab on the newborn, taken just a few minutes after birth was positive, but contamination cannot be excluded.

In China, the expert consensus is that for COVID-19-positive mothers Cesarean delivery is preferable [2, 20]; however, the ‘Guidelines for pregnant women with suspected SARS-CoV-2 infection’ encourage spontaneous vaginal delivery, where possible [21].

All studies agree that water birth is not indicated for COVID-19-positive women, due to evidence of fecal transmission of the virus.

COVID-19 in newborns

Thus far, only a few newborns born to COVID-19-infected mothers have tested positive [22].

The first report concerned a full-term newborn (40 weeks, 3,205 g) whose mother was symptomatic and lived near the Huanan Seafood Wholesale Market in Wuhan. Although the mother had not been to the market during pregnancy, other people living in the same community had. Therefore, that market is thought to be the source of the infection. An emergency Cesarean section was performed, during which the mother was wearing an N95 mask. Immediately after birth, the baby was healthy (Apgar scores 8 and 9 at 1 and 5 minutes, respectively) and had no contact with the mother. After 30 minutes, he vomited, after which he was isolated and closely monitored. His blood tests showed lymphopenia, abnormal liver function tests and elevated creatine kinase levels. The infant’s pharyngeal swab specimen, collected 36 hours after birth, was positive. The mother’s breast milk was negative for COVID-19. Despite the normal vital signs, the newborn’s chest CT revealed a high-density nodular shadow under the pleura of the posterior segment of the upper lobe of the right lung. Eventually, the newborn was discharged healthy at 16 days of age [22].

Another case concerned a 17-day-old baby who tested positive for COVID-19 and suffered from fever, cough and vomit. In his family, the first case of infection was detected in the maid, followed by the mother. A third newborn, born to an infected mother, developed a fever at 5 days of age. A fourth case was a newborn to an infected but undiagnosed mother, and was diagnosed 30 days after birth. Shortness of breath, vomiting, coughing and fever were present in all newborns. These infants’ vital signs were stable and their symptoms were mild. To date no severe cases of COVID-19 have been reported in newborns [23-26].

The Chinese Working Committee on Perinatal and Neonatal Management for the Prevention and Control of the 2019 Novel Coronavirus Infection has recently published a consensus based on a systematic review of recent studies on COVID-19 but also of earlier studies on SARS-CoV and MERS-CoV [20].

Comment of the authors: although there are many similarities between COVID-19 and SARS-CoV, notably a high correspondence (86%) of the whole genome, the involvement of the same receptor (ACE2) and the same routes of transmission (respiratory droplets and stool), there are also differences.

Firstly, COVID-19 shows mild symptoms but higher transmissibility and speed of spread than SARS [27].

Secondly, several studies have confirmed the lack of vertical transmission and the absence of clinical manifestations associated with the mother’s infection, except for a higher frequency of prematurity [28-30].

According to the experts, the infected newborn may be asymptomatic or show mild or severe symptoms. The incubation period is generally 3-7 days but the shortest was 1 day [31]. Detection of a highly homologous sequence with known COVID-19 in the upper respiratory tract, lower respiratory tract, sputum, endotracheal aspirate, bronchoalveolar lavage or serum are required for the diagnosis.

Neonatal clinical manifestations associated with COVID-19 especially in premature infants are often not specific: temperature instability, tachypnea,
grunting, nasal flaring, increased work of breathing (apnea), cough, tachycardia, feeding difficulties, lethargy, vomiting, diarrhea and abdominal distension [20].

An early laboratory exam may show normal or decreased leukocyte counts, or decreased lymphocyte counts. Mild thrombocytopenia and elevated levels of creatine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase may be detected [20].

The lung ultrasound or chest radiography are likely to show pneumonia. Abdominal radiography may show intestinal ileus [20].

The Chinese Committee defined newborns suspected of COVID-19 infection as those born to mothers with a history of COVID-19 infection between 14 days before delivery and 28 days after delivery, or newborns directly exposed to people infected with COVID-19.

Fig. 2 shows a flow chart for assessing and investigating suspected cases in newborns,

Figure 2. The management process for suspected and confirmed COVID-19 cases in newborns. Modified from: Wang et al., 2020 [20].

Once suspected newborns are admitted to quarantine rooms, asymptomatic cases undergo the following laboratory tests: CBC (complete blood count), CRP (C-reactive protein) and RT-PCR (real-time fluorescence polymerase chain reaction). Symptomatic suspected cases are additionally tested for liver function, kidney function and cardiac biomarkers and to exclude other etiologies of infection. Once diagnosis has been confirmed, lung ultrasound or chest X-ray are recommended in asymptomatic cases, plus abdominal radiography in symptomatic cases [20].
regardless of whether they present symptoms or not.

All suspected cases should be admitted to the quarantine ward.

The expert consensus recommends that mothers with suspected COVID-19 infection be placed in a negative-pressure delivery room.

Physicians must wear protective equipment, including hats, goggles, N95 masks, protective suits and gloves.

Delayed cord clamping, mother-baby contact and breastfeeding are not recommended.

Suspected newborns should be placed in an incubator in a separate room from **infected newborns**; both must be isolated and cared for nurses and doctors wearing protective equipment.

Strict protocols for entering and exiting the quarantine ward must be put in place and followed.

For infants with severe acute respiratory distress syndrome, high-dose surfactant, inhaled nitric oxide, and high-frequency oscillatory ventilation (HFOV) may be effective.

In more severe cases, continuous renal replacement therapy and extracorporeal membrane oxygenation (ECMO) may be necessary.

For critical patients, a multi-disciplinary team involving neonatal and intensive care specialists, pulmonologists, radiologists, specialists of infection and specialist nurses may be required.

Discharge criteria for COVID-19 patients vary depending on clinical features and are summarized in Fig. 3 [20].

![Discharge criteria](image-url)

Figure 3. Discharge criteria in newborns with confirmed COVID-19. Modified from: Wang et al., 2020 [20].

Patients are divided into 3 groups: asymptomatic, mild infection and severe infection. An essential condition for discharge is to have 2 negative tests for COVID-19 at 24-hour intervals [20].
COVID-19 after the neonatal period

By 30 January 2020, of the 9,692 confirmed cases reported in China, a total of 28 were children (aged from 1 month to 17 years) [32]. In February, WHO-China stated that 2.4% of all reported cases were aged ≤ 18 years. We do not as yet have complete clinical and epidemiological data on the pediatric population.

A recent pre-publication retrospective epidemiological study examined the characteristics and the transmission patterns of 2,143 pediatric patients with COVID-19 (731 confirmed and 1,412 suspected). Out of the total cases, 1,213 (56.6%) were boys. Over 90% of all patients were asymptomatic, mild or moderate cases. Severe or critical cases were much fewer than in adult patients (5.9% vs 18.5%) [33].

Even though children present mild forms of COVID-19, that does not mean that we should ignore those who have the disease. We have to take all measures of prevention: in fact children harbour large amounts of virus, even if asymptomatic, and viruses can persist in feces for a long time, even if they are absent from nasopharyngeal secretions [34].

Another study [35] including 10 children with COVID-19 reported milder respiratory infections compared to the adult cases. Fever and mild cough are the most common symptoms at the onset of the disease. In mild cases, the fever is short and resolves quickly.

The first pediatric case of COVID-19 detected in Singapore was a 6-month-old boy. The infant was admitted to the hospital because his mother and live-in helper were undergoing investigations for COVID-19. Initially, the child was asymptomatic but the viral load detected by the nasopharyngeal swab was very high. On day 2 of admission, during the viremic phase he had a single transient temperature of 38.5°C. On day 9 of admission, COVID-19 RNA was also detected in the stool of the infant. In this patient, nasopharyngeal swabs became negative on day 17 of admission [36].

Xia et al. [40] underline the unique clinical and CT features in pediatric patients: in the early stage of the infection, the test for COVID-19 RNA in children could give a false negative result. Moreover, coinfection is common in these patients. Consolidation with surrounding halo sign was observed in half of the patients and was considered as a typical imaging sign in pediatric COVID-19.

Diagnostic criteria

The diagnostic criteria for COVID-19 in children, which include epidemiological history and clinical and radiological characteristics, are summarized in Fig. 4 [31].
Table 1. Characteristics of the 15 pediatric cases. Modified from Wei et al., 2020 [37] and Liu et al., 2020 [38].

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patient No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td>1 mo</td>
<td>26 d</td>
<td>3 mo</td>
<td>3 mo</td>
<td>22 d</td>
<td>7 mo</td>
<td>8 mo</td>
<td>9 mo</td>
<td>11 mo</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td>Runny nose, cough</td>
<td>Cough, sputum production</td>
<td>Fever</td>
<td>None</td>
<td>Fever</td>
<td>Fever</td>
<td>None</td>
<td>Fever</td>
<td>Mild fever</td>
<td>Fever</td>
<td>Fever</td>
<td>Fever</td>
<td>Fever</td>
<td>Fever</td>
<td>Fever</td>
</tr>
<tr>
<td>Linked to Wuhan</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Duration of fever</td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Hospitalization (days)</td>
<td></td>
<td>YES (5)</td>
<td>YES (13)</td>
<td>YES (10)</td>
<td>YES (6)</td>
<td>YES (7)</td>
<td>YES (9)</td>
<td>YES (5)</td>
<td>YES (7)</td>
<td>YES (9)</td>
<td>YES (5)</td>
<td>YES (7)</td>
<td>YES (9)</td>
<td>YES (5)</td>
<td>YES (7)</td>
<td>YES (9)</td>
</tr>
<tr>
<td>ICU admission</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Treatments</td>
<td></td>
<td>Ribavirin</td>
<td>Oseltamivir</td>
<td>Glucocorticoids</td>
<td>Supplemental oxygen</td>
<td>Immune globulin</td>
</tr>
<tr>
<td>Ribavirin</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Oseltamivir</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Supplemental oxygen</td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Intravenous immune globulin</td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Severe complications</td>
<td></td>
<td>NR</td>
</tr>
</tbody>
</table>

Only a 3-year-old girl was admitted to the Intensive Care Unit (ICU). Some data are not reported (NR) because they were not provided in the original tables [37, 38].
Diagnosis is based on two positive nasopharyngeal swabs (RT-PCR nucleic acid search) or, alternatively, one positive bronchoalveolar lavage. The second procedure is not recommended in clinical practice, to avoid the risk of superinfections [31, 41].

The key messages to be stressed are early identification of the disease, promptly followed by effective isolation measures and appropriate treatment. Even if the common respiratory pathogen tests are positive, children who have a history of close contact with COVID-19 should also receive prompt COVID-19 pathogen testing [31].

General treatment

General treatment consists in bed rest, ensuring calories, water and electrolytes intake. In febrile
children, (> 38.5°C) oral acetaminophen (10-15 mg/kg every 4-6 hours) should be given [31, 32].

Respiratory support

If hypoxia occurs, oxygen therapy is mandatory and, where necessary, nasal high-flow therapy or non-invasive ventilation should be used. If children who undergo non-invasive ventilation do not improve, invasive ventilation using lung-protective strategies is recommended. If necessary, prone position ventilation, lung recruitment and, in severe cases, ECMO can be applied [31, 32].

Pharmacological therapy

At present, no specific medication has been proven to be effective against COVID-19; however, the current protocols for adults [42] include:
- empirical antibiotic therapy (e.g. ceftriaxone + clarithromycin; at usual dosage);
- antiviral therapy lopinavir/ritonavir 400/100 mg capsule, 2 x 2/day; alternatively, in more severe cases remdesivir 200 mg IV as loaded dose, then 100 mg/day IV (days 2-10);
- anti-rheumatic drugs such as hydroxychloroquine 200 mg capsule, 1 x 2/day for at least 5-7 days or tocilizumab;
- interferon alpha can reduce viral load (nebulization 200,000-400,000 IU/kg in 2 mL sterile water, 2/day for 5-7 days, 1-2 sprays on each side of the nasal cavity, 8-10 sprays on the oropharynx);
- no steroids; WHO advises against their use, on the basis of data from MERS and SARS, where they seemed to worsen prognosis.

The efficacy of these treatments has still to be determined.

Moreover, newborns and children generally have a mild clinical presentation.

This is why treatment is essentially symptomatic and supportive (IV rehydration, oxygen therapy).

Infants with severe respiratory distress can be treated with surfactant, nitric oxide inhalation, HFOV and ECMO if necessary [31, 32].

Newborns and children do not usually require drug therapy; in those cases that required antiviral therapy no dosage was reported.

Finally, evidence shows that plasma from convalescent patients can be used as treatment [43].

Conclusions

Currently, there is no evidence indicating vertical transmission of COVID-19. However, due to the limited number of cases and because the epidemiological and clinical pattern of COVID-19 is still unclear, newborns of mothers with confirmed or suspected COVID-19 are still considered at high risk. They should be isolated and monitored regardless of whether they have symptoms or not.

The age of disease onset in children ranges from 1 day to 17 years. Infants and children may be asymptomatic or show fever and low-mild grade respiratory symptoms. Less frequently, they suffer from abdominal pain, nausea, vomiting and diarrhea [31, 32].

Infants and children might be largely spared by COVID-19 thanks to the immaturity of their immune system.

In early-stage COVID-19, RNA detection in pharyngeal swab specimens may be negative. In addition, even after nasopharyngeal tests are negative, real-time RT-PCR rectal swabs may continue to be positive. In the early phase of the disease, white blood cell count is normal or decreased or with decreased lymphocyte count. Liver enzymes, muscle enzymes and myohemoglobin levels can be increased in some patients. Most patients display elevated C-reactive protein levels and normal procalcitonin levels. In the severe cases, D-dimer is high [31, 32].

Differential diagnosis of coinfection by COVID-19 and other viruses and/or bacteria should be considered [31, 32].

Suspected patients should be isolated in a single room or, depending on their medical conditions, can be left at home [32].

Last-second data

The purpose of this instant review is to highlight some neonatal pediatric aspects of COVID-19. To our knowledge, we have provided an overview of the present cases in pediatrics as at 19 March 2020. However, this topic needs to be continuously updated.

A recent review [44], published on 18 March, evaluated 171 children with COVID-19 treated at the Wuhan Children’s Hospital. In order to highlight the clinical features of COVID-19 in children we have summarized the signs and symptoms in Fig. 5 [44].

In a recent research letter published in the *New England Journal of Medicine* on 26 March [45], it
is hypothesized a possible vertical transmission of COVID-19 from an infected mother to her newborn. A JAMA Editorial on this letter suggested that a more definitive evidence is needed on this topic [46].

An updated document of the Italian Society of Neonatology, published on 22 March [47], underlines that the indication to avoid breastfeeding, suggested by some authors [21], does not fully consider the well-documented benefits of maternal milk [48].

Finally, last-second news report the death of a young girl (16 years old) in France, confirming again the dangerousness of COVID-19 [49].

Declaration of interest

The Authors declare that there is no conflict of interest.

References

Figure 5. Frequencies of the most common sign and symptoms in a child population with COVID-19. Modified from: Lu et al., 2020 [44].

COVID-19 in newborns and in children: the state of the art

41. Gao ZC. Efficient management of novel coronavirus pneumonia by efficient prevention and control in scientific manner. [Article in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi. 2020 Feb 5. [Epub ahead of print].

