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Editorial

“We are such stuff as dreams are made on”
William Shakespeare, The Tempest, Act IV, Scene 1
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When in 1943 Leo Kanner published the first 
systematic description of early infantile autism, 
suggesting a non-restricted genetic etiology [1], 
he would never have believed that about 80 years 
later we are still unable to definitively understand 
the multifactorial origin and pathogenesis of 
the complex spectrum of neurodevelopmental 
disorders currently defined as autism spectrum 
disorder (ASD) [2, 3]. Likewise, he would never 
have believed the extraordinary increase over 
time of ASD prevalence worldwide, documented 
both by data from the World Health Organization 
(WHO) and data obtained from systematic reviews 
and public surveys. Concisely, WHO estimated 
0.76% of the world’s children with ASD in 2010 
[4]; similar data (0.70%) were obtained elsewhere 
[5] even though epidemiological estimates can 
considerably vary by demographic factors, namely 
ethnicity and socioeconomic status, as well as 
diagnostic criteria. In the United States, a very 
recent survey performed in 11 states on children 
aged 8 years [6] assessed an overall prevalence 
of 16.8 autistic children every 1,000 non-ASD 
children (equal to 1 child every 59), with a higher 
prevalence in boys (26.6 per 1,000) than in girls 
(6.6 per 1,000). Worldwide, autism affects 2 to 3 
times more males than females [7].

Actually, very few human diseases like ASD 
can be considered the result of interplay between 
a multitude of factors: genetics, epigenetics, 
environment, socioeconomic status, maternal and 
neonatal infections, prenatal nutrients (i.e. folic 
acid), immune system, gut microbiota composition, 
maternal exposure to potentially toxic drugs (e.g. 
thalidomide) and environmental toxicants, and 
formula feeding (instead of breastfeeding) [8]. 
Taken individually, each of these factors may be 
considered a potential risk factor for developing 
ASD. However, the wide range of symptoms 
and disabilities depicting ASD as a “galaxy of 
social and communication difficulties” takes 
place through the combination of two or more 
factors cited above; notably, the role of each 
(e.g. genetics) cannot be dissociated from the 
context of epigenetic mechanisms and specific 
interactions. Consequently, the identification of 
common inherited genetic variants by whole-
genomic sequencing [9, 10] and the clinician’s 
appraisal of symptoms through parental interview, 
observation, and standardized behavioral scales [2] 
remain the current standards for ASD diagnosis. 
Unfortunately, in children aged under two and a half 
years a definite clinical diagnosis is highly unlikely 

[11], even in the presence of early disturbances 
in sleeping, crying and feeding; indeed, autism 
does not rely on pathognomonic symptoms. 
Despite a worldwide agreement on the urgent 
need for a timely identification of ASD as early 
in life as possible [12], most children with ASD 
are diagnosed far too late. The delay in diagnosis 
hampers initiating effective measures for managing 
cognitive impairment and adopting educational 
training both for parents and preschool staff.

Despite this wholly unsatisfactory scenario, 
encouraging perspectives are emerging from new 
insights into non-genetic factors involved in the 
origin of ASD and from advanced diagnostic 
tools, namely metabolomics. We are aware that 
in the second decade of the third millennium the 
cornerstone of ASD diagnosis is (and will be) 
based on the system biology approach: no longer 
the equation “one symptom one biomarker”, 
but the detection of the individual molecular 
phenotype and its changes over time, just like 
a fingerprint. The molecular phenotype, closely 
reflecting the result of interplay between genomics, 
transcriptomics, proteomics, environmental factors 
and gut microbiota, should thus be associated with 
the type and degree of the behavioral/cognitive 
impairment and with functional neuroimaging [13, 
14]. Phenotype is represented by metabolites, low-
molecular-weight end-products of cellular metabolic 
pathways, which in turn are influenced by genetic 
and non-genetic factors. Metabolomics allows the 
systematic identification and quantification of the 
global collection of all metabolites, namely the 
metabolome, recognizable either in biological fluids 
(e.g. urine) or in tissues [15]. Since metabolites have 
no set of codons, they can be sequenced neither like 
genes, encoded by 4 nucleotides, nor like proteins, 
constituted by 20 amino acids; therefore, metabolites 
can be identified by methods able to characterize 
their elemental composition, molecular charge 
and mass, stereochemical orientation, and order of 
atoms [16]. Today, high throughput technologies 
like proton nuclear magnetic resonance (1H NMR) 
spectroscopy, liquid chromatography and gas 
chromatography coupled with mass spectrometry 
(LC-MS and GC-MS, respectively) and further 
sophisticated analytical methods are outstanding 
tools that allow researchers to accurately explore 
the metabolome and its variations over time in 
various perinatal conditions involved in ASD 
etiology, for example perturbations of the gut-brain 
axis, due to gut dysbiosis, and to the lack of the 
intestinal mucosal barrier, caused by inflammation. 
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This means a great opportunity to establish an early 
diagnosis of ASD, to assess the risk of developing 
postnatal ASD and to search for new highly sensitive 
and specific biomarkers.

Like other neuropsychiatric diseases, ASD 
may be closely correlated with fetal and perinatal 
programming of the brain, consisting of maternal 
and fetal epigenetic factors that influence brain 
development and maturation [17, 18]. The temporal 
profile of neurodevelopmental sequences from 
perinatal age to old age is closely associated with 
the age degree of microbiota stability/diversity 
throughout life; in particular, perturbations of 
the developing gut microbiota during fetal and 
perinatal life can impact neurodevelopment and 
potentially lead to adverse mental health outcomes 
[19]. Changes occurring in the fetal and perinatal 
ages can be accurately recognized either by 
targeted or untargeted metabolomic approaches 
[20]; moreover, metabolomics allows the discovery 
of new biomarkers for an early diagnosis and 
monitoring of fetal and perinatal programming 
[21]. Notably, metabolomics accurately identifies 
those metabolites that are involved in the same 
pathway as well as the metabolic network shaped 
by nodes (metabolites) and their interactions 
(scale-free network models) [22].

Several metabolomic studies have explored the 
urine (and very few the blood plasma) metabolome 
in ASD children: their main findings have recently 
been summarized in a comprehensive review [23]. 
Despite a considerable heterogeneity in study 
design, population age and technologies, most of 
these studies and further studies published later 
[24, 25] have found abnormalities in gut bacterial-
derived compounds, tryptophan, vitamin B6, and 
purine metabolic pathways, phenylalanine and 
tyrosine biosynthesis, unbalanced concentration 
of intermediary compounds of the tricarboxylic 
acid cycle (TCA), also known as the citric-acid or 
Krebs cycle, and finally diet-derived metabolites. 
By using 1H NMR spectroscopy, our group 
found a combination of increased and decreased 
concentrations of: hippurate, glycine, creatine, 
tryptophan, D-threitol, and glutamate, creatinine, 
lactate, valine, betaine, and taurine, respectively 
[26, 27]. These findings strongly suggest a crucial 
role of oxidative stress and gut microflora in ASD 
development. In children with ASD, gut dysbiosis 
is characterized by the increase in Clostridium, 
Alistipes, Akkermansia, Caloramator, Sarcina 
spp., and by the reduction in Prevotella spp., E. 
siraeum, and Bifidobacterium spp. As a result, in 

these children the urine metabolome is marked 
by alterations in hippuric acid, p-hydroxyphenyl­
acetic acid and 3-(3-hydroxyphenyl)-3-hydroxy­
propanoic acid concentration. Moreover, propi­
onic acid (PA), a short-chain fatty acid naturally 
present in many foods and extensively used in 
the food industry and agriculture, play a pivotal 
role in altering neurotransmitter pathways and 
acting as a mitochondrial toxin when its produc­
tion increases dramatically following bacterial 
fermentation due to the increase in Clostridium 
spp. Indeed, the combination of a considerable 
amount of PA within the intestinal lumen and 
impairment of the intestinal mucosa permeability 
leads to the passage of this organic acid into the 
bloodstream and its immediate accumulation 
in the central nervous system (CNS). The most 
dangerous effects are: (a) PA interfering in the 
biosynthesis of neurotransmitters; (b) by closing 
gap junctions, PA hampers the passage of small 
molecules and ions between cells, which is vital 
for synchronizing neural electrical activity and 
crucial in early brain development. Moreover, a 
decrease in gap-junction coupling may also inhibit 
cortical pruning, a phenomenon consistent with 
the increased density of neurons found in ASD 
patients; (c) abnormal amounts of PA enter the 
TCA cycle, causing a shift in the cycle and thus 
leading to less NADH production with a deficiency 
of energy carriers, and to the blockage of fatty 
acid oxidation. Interestingly, in the urine of ASD 
children, we found an increase in citric acid and 
aconitate combined with a decrease in succinic 
acid [28, 29], thus confirming the association 
between ASD and mitochondrial dysfunction, 
which has been well documented in children 
with ASD [30, 31]. Recently, the strategic role of 
mitochondria has been revealed by the discovery 
of their transit through nanotubules that connect 
cells one to another, thus operating as primary 
messengers for inter-cellular communication [32]. 
Although the road ahead is still long, especially 
in knowledge translation from bench to bedside, 
it appears unequivocal that the challenge of 
precision medicine in autism is mainly based on 
metabolomics: for example, neither genomics nor 
proteomics can assess changes in PA concentration 
and its dangerous effects on several human cellular 
pathways. Metabolomics can lead to the discovery 
of dozens of biomarkers strongly implicated in the 
pathogenesis of ASD (i.e. mannitol, L-threonic 
acid, fucose, glycine, serine, and many others), 
as recently confirmed by new preliminary results 
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[33] and can help in reducing time lags in transla­
tional medicine even by facilitating new patent 
applications for using metabolomics methods and 
reagents easily adaptable to routine clinical practice 
[34]. Nevertheless, the metabolomics approach to 
the study of ASD cannot be dissociated from the 
investigation of gut microbiota, especially in the 
perinatal age, with the aim of adjusting in a very 
short time any bacterial dysbiosis by therapeutic 
interventions [35]. Interestingly, new insights 
are emerging on the role of intestinal tract yeast 
colonization [36].

Encouraging perspectives in reducing non-
genetic risk factors for autism consist of a close 
monitoring of maternal lifestyle and changes 
in the placental and fetal microbiota during 
pregnancy. A predominant role in determining 
the prenatal risk of ASD is interpreted by 
maternal drug ingestion/administration. Besides 
the well-known deleterious effect of thalidomide 
[37], prolonged assumption of antibiotics 
during pregnancy can significantly alter the 
homeostatic maintenance of a balanced intestinal 
bacterial flora, thus leading to dysbiosis [38]. 
The (ab)use of antidepressant drugs during the 
preconception period and over gestation is also 
highly dangerous owing to the harmful effect of 
selective serotonin reuptake inhibitors [39, 40]. 
Both human and animal epidemiological studies 
have demonstrated that valproic acid consumption 
during pregnancy is associated with ASD [41, 42]. 
Finally, the potential toxicity of acetaminophen 
(paracetamol), a very common analgesic and 
antipyretic drug widely used during pregnancy, 
should be carefully considered [43]. This drug 
easily crosses the placental barrier and induces 
neurodevelopmental impairment by interfering 
with fetal hormones and signaling pathways. 
Even worse, the exposure to acetaminophen after 
birth and in early childhood may be considered a 
potential risk factor for the development of ASD, 
as recently described [44]. While we should move 
with caution before definitively establishing 
that a drug or an environmental product can be 
considered a risk factor for ASD, we cannot rest 
on our laurels. We must promote further research 
on ASD based on the system biology approach. 
Putting ourselves in the shoes of parents who 
have just been told that their child has autism, 
we cannot say to them “unfortunately your 
problem is very common, your family belongs to 
around 16.8 per 1,000 families with an autistic  
child” [45]. 

Please, let’s roll up our sleeves and build 
a multidisciplinary network of scientists and 
physicians in search of tools that offer new, 
favorable perspectives to parents of autistic 
children, thus reducing the strong negative social 
impact of autism. 
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