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“The womb may be more important than the home”
David Barker
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It has been well known for many years that 
prenatal life is not fully protected in the uterine 
microenvironment. But only over the last decade we 
have been focusing on mechanisms and modalities 
of maternal and foetal exposure to an impressive 
range of chemicals (e.g.: endocrine disruptors) 
[1], physical factors (e.g.: ionizing radiations) [2] 
and biological agents (e.g.: viruses) able to induce 
potentially adaptive and predictive epigenetic 
changes in the embryo-fetal genome, thus interfering 
with the programming of tissues and organs in an 
often irreversible way. Sometimes these epigenetic 
marks could be even inherited from one generation 
to another [3]. This new awareness could radically 
transform the representation of the individual 
development (ontogeny) and of the evolution of our 
species (phylogeny) [4, 5]. 

In particular, on these bases, a new model of 
pathogenesis is outlined which can explain in 
a more exhaustive way the ongoing increase of 
chronic-degenerative, inflammatory and neoplastic 
diseases that we could define as the Epidemiological 
Transition of the XXI Century: in fact, cardiovascular 
[6, 7] and endocrine-metabolic disorders (obesity, 
metabolic syndrome, insulin resistance and 
diabetes II) [8-10]; immune-mediated diseases 
(allergy [11, 12], celiac disease and autoimmune 
diseases [13]); neuro-developmental [14, 15] and 
neurodegenerative disorders [16] (autism, ADHD, 
Alzheimer disease) and many types of cancer [17-
19] are rapidly increasing all over the world in 
relation to the degree of industrialization [20, 21]. 

This model of pathogenesis is the so-called 
theory of the embryo-foetal origins of adult diseases 
(DOHaD: Developmental Origins of Health and 
Diseases) which is based on an amazingly simple 
and universal mechanism: the information coming 
from the environment (through the mother and the 
placenta) can modulate the whole developmental 
process of the foetus, by inducing its cells to 
differentiate in a predictive and adaptive way [22]. 
If the foetal programming is disturbed by pollutants 
or if there is a mismatch between the information 
received by the foetus and the actual postnatal 
environment the result can be the increase of chronic 
diseases we are witnessing [23], that could even 
concern the subsequent generations if the flawed 
epigenetic marks concern the germ cells [24].

In order to better understand the revolutionary 
impact of this new pathogenic paradigm, we have 
to underline that the building of the phenotype is 
not the direct product of the program encoded in 
our DNA but the effect of the interaction between 

the information coming from the environment and 
the one potentially inscribed in the DNA [25]. This 
also means that while the sequence of DNA (the 
hardware) [26] is very similar in each individual 
of our species (being the product of the phylogeny), 
the epigenome (the software), which is the product 
of the ontogeny, is very different in every cell 
and in every individual, thus causing the great 
physiological and pathological variation of human 
phenotypes. 

The epigenome is, in fact, the fluid, dynamic 
component of the genome, able to acquire a memory 
of the experiences, thus giving the individuals the 
opportunity to better adapt to the environment. Some 
cell types, in particular those of the central nervous 
system (neurons and glia) [27] and those belonging 
to the immune system (lymphocytes) [28, 29], have 
a greater ability in acquiring molecular memory both 
epigenetically and genetically, maintaining a great 
plasticity during all life. This is very important, but 
can become very dangerous for our health [30, 31].

However, the most interesting findings concern 
the germ cells. In the past germ cells were 
supposed to be isolated and unable to be modified 
by the information coming from the environment 
(Weismann Barrier). But it is more and more 
evident, and even upsetting, that both male and 
female gametes are exposed to external information 
[32, 33] and able to modify both their epigenome and 
their genome paving the way for a transgenerational 
transmission of new characters and, as stated above, 
of pathological phenotypes [34].

The period of the ontogenesis is obviously, in 
this perspective, the most important of our life: both 
because of the great developmental (epigenetic) 
plasticity of poorly differentiated cells and tissues 
and because of the inevitable amplification of the 
effects, in the postnatal life, of the early epimutations 
that make up the foetal programming.

It is important to realize that our phenotype 
is programmed for life by this complex process, 
partly genetically programmed through millions 
of years of evolution, partly induced by the 
information coming from the environment through 
the modulating action of the placenta [35]. The 
very fact that our organism is composed of 
trillions of cells all descending from a totipotent 
cell (zygote) and containing an almost identical 
DNA, yet morphofunctionally very different (the 
human body being composed of more than 200 
different cell types), reveals the crucial importance 
of the epigenome and of the fetal programming in 
building our (both physiological and pathological) 
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phenotype. All these considerations made the 
scientists understand they had to redesign the 
fundamentals of Genome Project [36-38].

The waddingtonian essence [39] of this 
process is now widely accepted and demonstrated 
in molecular terms as well as the particular 
sensitivity of the developing organism both to 
the physiological signals (morphogens) and 
to the potentially harmful information coming 
from the environment in the very first stages of 
organogenesis (windows of exposure). Among the 
most known epi-genotoxic agents able to induce 
alterations in the DNA methylation and, therefore, 
to disrupt the endocrine-metabolic programming, 
there are: heavy metals (particularly arsenic) and 
other “endocrine disruptors” such as bisphenol 
A [40, 41], genistein [42], vinclozolin [43], 
methoxychlor, TCDD and diethylstilbestrol (DES) 
[44]. In particular, experiments with vinclozolin 
and TCDD produced transgenerational effects in 
laboratory animals [45].

If we want to understand how this new 
pathogenetic paradigm (DOHaD) was conceived 
it could be useful just to recall which were the 
fundamental steps in this research [46]. In the 
80s and 90s several studies showed significant 
correlations between low birth weight (a non-
specific index of prenatal distress) [47, 48] and an 
increased incidence of heart diseases, hypertension, 
obesity, metabolic syndrome, type 2 diabetes 
and even neuropsychiatric diseases [49, 50] in 
adulthood. Some scientists supposed a connection 
between different situations of foetal distress and 
an altered (epigenetic) programming of organs and 
tissues [51, 52]. Nowadays the above mentioned 
epidemiological transition characterized by a 
general increase in obesity and type 2 diabetes, 
autism spectrum disorders and neurodegenerative 
diseases, allergies and autoimmune disorders, 
cancer may be explained by such a collective and 
transgenerational mechanism rather than by a 
genetic one.

This new paradigm is important not only to 
explain in a more exhaustive way the embryo-foetal 
origins of all the above mentioned disorders and 
their dramatic increase over the last decades, but 
also to try to effectively face this epidemiological 
transition. The key-term in this context is certainly 
primary prevention: only by reducing the maternal-
foetal factors of distress and the exposure of the 
foetus (and of its gametes) to pollutants, it would 
be possible to protect the correct programming of 
cells, tissues and organs.

Environment and fetal programming
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